
Projet1 – TP1 : Introduction to Python B. Pasca

Projet1 – TP1 : Introduction to Python
Marin Bougeret, Bogdan Pasca, Kevin Perrot

{ Bogdan.Pasca } @ens-lyon.fr
September 13, 2010

Python in a flash !

What ?

History – Invented in 1990 by Guido Van Rossum
– The name "Python" stems from "Monty Python’s Flying Circus"
– Intended to be a scripting language on Amoeba OS
– First public release was in 1991

Goals – Designed to be simple yet powerful
– Allow modular programming
– Great emphasis on readability
– Rapid application development
– Easy to embed in and extend with other languages

How ?

SHELL interactive – perfect for : learning a language, testing a library, testing your modules
– to start Python simply type python in your terminal
– to execute a Python file (.py) feed the file as a parameter : python yourfile.py
>>> print "Hello world!"
Hello world!
>>> x = 12**2
>>> x/2
72
>>> #this is a comment line

(built in)Data structures : Decimal, Octal, Hexa, Complex(.5+4j),Long
– Strings :
>>> # Concatenation
>>> "Hello"+"World"
’HelloWorld’
>>> # Repetition
>>> "Arenaire"*3
’ArenaireArenaireArenaire’
>>> # Indexing
>>> "Arenaire"[0]

1

Projet1 – TP1 : Introduction to Python B. Pasca

’A’
>>> # Slicing
>>> "Arenaire"[1:3]
’ren’
>>> # Size
>>> len("Arenaire")
8
>>> # Comparison
>>> "Arenaire" < "arenaire"
True
>>> # Search
>>> "A" in "Arenaire"
True

– Lists :
>>> a=[99,"bottles of beer",["on","the","wall"]]
>>> b=[98,"bottles of water"]
>>> a+b
[99, ’bottles of beer’, [’on’, ’the’, ’wall’], 98, ’bottles of water’]
– Same operators as for strings : a+b, a*3, a[0], a[-1], a[1 :], len(a)
– Item and slice assignment
>>> a[0]
99
>>> a[1:2]
[’bottles of beer’]
>>> del a[-1]
>>> print a
[99, ’bottles of beer’]

– more list operations :
>>> a = range(5)
>>> print a
[0, 1, 2, 3, 4]
>>> a.append(5)
>>> print a
[0, 1, 2, 3, 4, 5]
>>> a.pop()
5
>>> print a
[0, 1, 2, 3, 4]
>>> a.insert(0,42)
>>> print a
[42, 0, 1, 2, 3, 4]
>>> a.pop(0)
42
>>> print a
[0, 1, 2, 3, 4]
>>> a.reverse()

2

Projet1 – TP1 : Introduction to Python B. Pasca

>>> print a
[4, 3, 2, 1, 0]
>>> a.sort()
>>> print a
[0, 1, 2, 3, 4]

– Tuples :
– key = (lastname, firstname)
– point = x, y, z # parentheses optional
– x, y, z = point # unpack
– lastname = key[0]
– singleton = (1,) # trailing comma!!!
– empty = () # parentheses!
– tuples vs. lists ; tuples immutable

Variables – No need to declare
– Need to assign (initialize)
– use of uninitialized variable raises exception
– Not typed

>>> friendly=0
>>> if friendly: greeting="Hello"
else: greeting = 12**2

>>> print greeting
144

Reference semantics – Assignment manipulates references
– x = y does not make a copy of y
– x = y makes x reference the object y references
– Very useful ; but beware !
– Example :
>>> a = [1,2,3]
>>> b=a
>>> a.append(4)
>>> print b
[1, 2, 3, 4]

Control structures – if condition: statements
[elif condition: statements]*
[else: statements]

– while condition: statements
– for var in sequence: statements
– break
– continue

>>> # Fibonacci series
>>> a=0
>>> b=1
>>> while b<100:
print b

3

Projet1 – TP1 : Introduction to Python B. Pasca

a,b=b,a+b

1
1
2
3
5
8
13
21
34
55
89

Procedures and functions – General form :
def name(arg1, arg2, âĂę)

Statements
return # from procedure OR
return expression # from function

– Procedures can omit any return
– example :
>>> def gcd(a,b):
"greatest common divisor"
while a!=0:
a,b= b%a,a # parallel assignement
return b

>>> gcd.__doc__
’greatest common divisor’
>>> gcd(12,20)
4

Classes and objects – : Classes
class ClassName:
statements

class ClassName(BaseClass1, BaseClass2)
statements

– Objects : x = ClassName() creates a new instance of class ClassName and assigns it to
the variable x

– Example :
>>> class Stack:

"A well-known data structure..."
def __init__(self): # constructor

self.items=[]
def push(self,x):

self.items.append(x) # the sky is the limit

4

Projet1 – TP1 : Introduction to Python B. Pasca

def pop(self):
x=self.items[-1] # what happens if it’s empty?
del self.items[-1]
return x

def empty(self):
return len(self.items)==0 # Boolean result

>>> # To create an instance
>>> x = Stack() # no ’new’ operator!
>>> x.empty()
True
>>> x.push(1)
>>> x.items
[1]
>>> x.empty()
False
>>> x.push("hello")
>>> x.items
[1, ’hello’]
>>> x.pop()
’hello’

Getting the grips

1. Write a function that computes the area of a circle given the radius R (circle.py)

2. try importing your function using the import statement : import circle and try importing
it like this : from circle import area. What is the difference ?

3. Try adding 3.1 and 5.6. What is the result ? Why ?

4. Print values with a specified precision : "%f" % 8.7 vs. "%1f" % 8.7

5. Outputting : a="larger", "the result is %s than 4" % a. Try this for different formats : %d,
%f,

6. Write a new program which fetches the radius from the user and then computes the cir-
cle’s area. Use the radius=int(raw_input("Please enter a radius")). What happens
if you give the input as a floating point ? Modify the program so that it accepts floating
point values for the radius. What happens if you feed a character string instead of int or
float ? Modify the program so that it exits gently. Think about using the :

try
statements

except(ValueError):
print "you entered invalid input"

7. Files. Create by hand a file containing numbers on each line. Write a python program that
reads the file line by line, converts the values read into floating-point values and writes
them in another file such that line k in the second file contains the sum of the elements
from 1 :k from the first file. For reading the data from the first file you can either use the

5

Projet1 – TP1 : Introduction to Python B. Pasca

readline function or iterate on the file object itself (for line in f :). For writing data in the
file you can use : print » f, "my data %f" % acc

References

The course by Eddy Caron 2009 an the references therein.

6

