
Distributed Systems – TD7 : JXTA - first steps B. Pasca

Distributed Systems – TD7 : JXTA - first steps
Bogdan.Pasca @ens-lyon.fr

13 November 2009

HelloWorld Example

This example illustrates starting and stopping JXSE. The application controls configuration,
startup and stopping of the JXTA network using the NetworkManager utility class.

Compile and run the following code :

1 import net . jxta . platform . NetworkManager ;
2 import java . text . MessageFormat ;
3 /* *
4 * A example of s t a r t i n g and stopping JXTA
5 */
6 publ ic c l a s s HelloWorld {
7 /* *
8 * Main method
9 *

10 * @param args none defined
11 */
12 publ ic s t a t i c void main (String args []) {
13 NetworkManager manager = n u l l ;
14 t r y {
15 manager = new NetworkManager (NetworkManager . ConfigMode . EDGE , " HelloWorld ") ;
16 System . out . println (" S t a r t i n g JXTA") ;
17 manager . startNetwork () ;
18 System . out . println (" JXTA S t a r t e d ") ;
19 } catch (Exception e) {
20 e . printStackTrace () ;
21 System . exit (−1) ;
22 }
23 System . out . println (" Waiting f o r a rendezvous connect ion ") ;
24 boolean connected = manager . waitForRendezvousConnection (1 2 0 0 0) ;
25 System . out . println (MessageFormat . format (" Connected : { 0 } " , connected)) ;
26 System . out . println (" Stopping JXTA") ;
27 manager . stopNetwork () ;
28 }
29 }

For compilation be sure to include in your classpath the JXTA jars.
1 javac −classpath ./ jxta . jar : . / bcprov−jdk14 . jar : . / javax . servlet . jar : . / org . mortbay . jetty . jar : . HelloWorld . java
2 java −classpath ./ jxta . jar : . / bcprov−jdk14 . jar : . / javax . servlet . jar : . / org . mortbay . jetty . jar : . HelloWorld

Line 15 configures the peer as edge node, with a peer name of HelloWorld, this call only
creates the default configuration for the JXTA peer.

Why the result ?

1

Distributed Systems – TD7 : JXTA - first steps B. Pasca

1 INFO : Started JXTA Network !
2 JXTA Started

3 Waiting f o r a rendezvous connection

4 INFO : Start relay client thread

5 Connected : f a l s e
6 Stopping JXTA

7 INFO : Stopping JXTA Network !

The NetworkManager abstracts the configuration to one of the preset configurations :

Ad-Hoc : for deploying a stand-alone node in an ad-hoc network and connected in a peer-to-
peer fashion using multicast, i.e., no rendezvous or relay services are used.

Edge : supports Ad-Hoc behavior and also allows a peer to connect to an infrastructure peer
(a rendezvous, relay, or both).

Rendezvous : allows the node to make network bootstrapping services available to others,
such as discovery, pipe resolution, etc.

Relay : enables a peer to provide message relaying services to allow peers to traverse firewalls.

Proxy : enables JXME Jxta for J2ME proxy services.

Super : enables the simultaneous functionality of a rendezvous, relay and a proxy node.

Try replacing line 15 with :
1 manager = new NetworkManager (NetworkManager . ConfigMode . ADHOC , " HelloWorld " , new File (new File (" . cache ") , " HelloWorld ") . toURI ()) ;

1 INFO : Started JXTA Network !
2 JXTA Started

3 Waiting f o r a rendezvous connection

4 Connected : t rue
5 Stopping JXTA

6 INFO : Stopping JXTA Network !

When the application completes, you can inspect the various files and subdirectories that
were created in the ./.cache/HelloWorld subdirectory :

PlatformConfig : the configuration file created by the auto-configuration tool

cm : the local cache directory ; it contains subdirectories for each group that is discovered. In
the hello world example, we should see the jxta-NetGroup and jxta-WorldGroup sub-
directories. These subdirectories will contain index files (*.idx) and advertisement store
files (advertisements.tbl).

Augment the Hello World example so that the details peer and peer-group are also dis-
played.

1 INFO : Started JXTA Network !
2 JXTA Started

3 Peer name : HelloWorld

4 Peer Group name : NetPeerGroup

5 Peer Group ID : urn : jxta : uuid−59616261646162614E50472050325033625BC0AEC3604A78A01083C46847105A03
6 Waiting f o r a rendezvous connection

7 Connected : t rue
8 Stopping JXTA

Remember the PlatformConfig file ? This file is created each time the network manager is
instantiated. In order to avoid this overhead, We will learn to work with local configurations.
This will be useful when we need a specific configuration on an application basis.

We will need a network configurator in order to configure the network :

2

Distributed Systems – TD7 : JXTA - first steps B. Pasca

1 NetworkConfigurator TheConfig ;

We need to set the network manager configuration to persistent to make sure the Peer ID is not
re-created each time the Network Manager is instantiated :

1 manager . setConfigPersistent (t rue) ;

Next we need to obtain the network configurator or object :
1 TheConfig = manager . getConfigurator () ;

Then we check if a local configuration exists. If it does we load it. Try/catch constructions
have been left out for clarity. Be sure to use them in your code.

1 // Does a l o c a l peer c o n f i g u r a t i o n e x i s t ?
2 i f (TheConfig . exists ()) {
3 // We load i t
4 File LocalConfig = new File (TheConfig . getHome () , " PlatformConfig ") ;
5 TheConfig . load (LocalConfig . toURI ()) ;
6 } e l s e {
7 TheConfig . setName (Local_Peer_Name) ;
8 TheConfig . setPrincipal (User_Name) ;
9 TheConfig . setPassword (Password) ;

10 TheConfig . save () ;
11 }

Augment the Hello World example with the capability to read the local configuration.
Next we need to find other peers in the network. On one hand we will have the JXTA-Shell

with one peer. On the other we will have an augmented Hello World program which sends
remote discovery advertisement requests.

In order to be able to send advertisement requests we need to declare and instantiate a
discovery service.

1 DiscoveryService discovery ;

Then we need to start the service :
1 discovery = TheNetPeerGroup . getDiscoveryService () ;

In order to asynchronously receive discovery events, the HelloWorld class needs to imple-
ment DiscoveryListener.

1 publ ic c l a s s HelloWorld implements DiscoveryListener

Then we need to implement the public void discoveryEvent(DiscoveryEvent ev)method
that is asynchronously called when a discovery request reply is received. In order to link the
current object to the events associated to the discovery service we need to :

1 discovery . addDiscoveryListener (t h i s) ;

The discovery requests have the form :
1 discovery . getRemoteAdvertisements (// no s p e c i f i c peer (propagate)
2 null , // Adv type
3 DiscoveryService . ADV , // A t t r i b u t e = any
4 null , // Value = any
5 null , // one advert isement response i s a l l we are looking f o r
6 1 , // no query s p e c i f i c l i s t e n e r . we are using a globa l l i s t e n e r
7 n u l l) ;

Check that your program works by verifying that only when the shell is started the discov-
eryEvent(DiscoveryEvent ev) occurs.

3

