
M1 - Compilation Bogdan Pasca

TD12 : Compiling OOLanguages - Tuesday, December 14

Exercise 1 Consider the following Java program :

class A {
int a = 0;
int x() { return a; }

};

class B extends A {
int b = 2;
int e = 4;
int y() { a = a - b + e; return a; }

};

class C extends A {
int c = 3;
int e = 5;
int x() { return a + e; }
int z() { e = a * c; return a; }

};

class Test {
public static void main (String[] args) {

A p = new B();
B r = new B();
C s = new C();
A t = new A();
p.x(); r.x(); s.x(); t.x();

}
};

Answer the following questions :

Question 1 The program instantiates three classes of objects (A, B, and C). Show class hierarchy and
the object layout.

Solution : The class hierarchy is presented in figure 1.

The object layout is presented in figure 2. �

Question 2 Can the e fields in classes B and C be placed at different offsets ?

Solution : Yes, as there is no inheritance relation between the B and C classes. �

Question 3 How does the compiler deal with polymorphism in this case ?

1



A

a

x()

B

y()

b
e

C

x()

e
c

z()

Figure 1 – class hierarchy

x()
z()

x()

y()

x()
a

a

b

e

e

a

c

objects

class B

class C

class A

Figure 2 – object layout

Solution : Polymorphism is the ability of an object to disguise as another one. In our example this will
be the ability of objects of classes B and C to disguise as objects of class A.

A p = new B();

There are major implications when managing polymorphism in code generation. Each object of class B
has two attributes b and e and inherits the a attribute from class A. In order to disguise as an A class object,
p in the above example needs to place the attributes inherited from class A first in the class instance record
(CIR). Therefore, the instantiation would like this : a, c, e in the memory. The c and e attributes would not
be accessible directly, for example p.c, but do exist in the memory and are accessible via a cast.

On the other hand, the order of the c and e variables can be any, but they must stay beyond the variable
a, inherited from A, so that the code already compiled implying class A does not need changing.

�

Question 4 How does the compiler deal with virtual methods ? How many different methods (i.e.,
assembly-level procedures) will be generated by the compiler for the above program? What are the names
of these methods ? Give their names in the “assemblerized” form classname methodname.

Solution : In an object oriented language, methods that can be overridden are called virtual. In our
example, one overridden method is x(). If we execute the below code, because the method x() is called
from an A class object, the first instinct would be to call the corresponding body associated to this method
belonging to class A. However this would be wrong.

2



A p = new C();
p.x();

Overridden methods are enforced even if the object has been cast into the parent class. What we want
in this case is to call the x() method associated to class B.

This is done by using the technique called virtual method table (VMT). The technique consists in
generating one fixed size table for each class, containing pointers to the virtual methods defined by that
class. The VMT for our classes are presented in detail in Figure 3.

class B VMT

B_y

A_x

class A VMT

A_x

class C VMT

C_x

C_z

Figure 3 – VMTs for the classes defined in the above program

The class instance record (CIR) contains a first entry which points to the VMT corresponding the object
actual class. �

Question 5 Java permits a program to explicitly cast an object into another one. But there is a
complication : the Java language requires a ClassCastException to be thrown, when the cast is not possible.
What can the compiler do to allow for this possibility ?

Solution :

A p = new C();
C nc = (C) p;

A cast like the one presented above can be easily solved by looking at the CIR first field of the p variable
which points to the VMT of the actual object. If the cast VMT address is equal to the VMT address in the
CIR, it’s we allow the cast, otherwise we trow an exception.

However, if p would be a subclass of C, casting it to C should still be allowed. However, in this case the
cast VMT address is different from the CIR VMT address. What we need to do is add another field VMT
which points to the parent VMT. In this case, we need to go through the linked list until either we find a
matching VMT address, or we get to the Object VMT, moment when we should throw the exception. �

Question 6 Draw the memory content at the end of main. Show the pointer links between the pointer
variables (p, r, s, t), objects, dispatch tables, and procedures. Note : Your picture should have four kinds of
nodes (pointer variables, objects, dispatch tables, and procedures) and one kind of edge (denoting points-to
relationship). The content of each pointer in the picture should be depicted as an edge to the target of the
pointer.

Solution : Solution is given in figure 4

�

Question 7 Give the sequence of assembler instructions that implements the dynamic dispatch call
t.x(). Assume that the value of the variable t is stored in register R0. Assume that the VMTs and the CIRs
are laid out as you defined above. Comment your code fragment : what does each offset mean ? what does
each register contain ?

Solution :

3



A_x

B_y

C_z

C_x

{VMT A

{VMT B

{VMT C

e

b

a{CIR p

{CIR r
a

b

e

{CIR s
a

c

e

a
{CIR t

Figure 4 – Memory after execution

//push arguments to stack; no arguments => no pushing
load R1 [R0] //the address of the VMT
load R2 [R1+offset] //load the memory address where the method code begins
move RA PC+1 // we return to the next instruction
move PC R2 // we move the program counter to the begining of the method

// we use the convention that the address of the object t is passed in R0

�

Exercise 2 Data Locality

Consider the code given below for computing a 2D Jacobi stencil :

4



for(int t=0; t<=T; t++)
for (int i=1; i<=N-1; i++)

for (int j=1; j<=N-1; j++)
a[t][i][j] = 1/5*(a[t-1][i-1][j] +

a[t-1][i][j] +
a[t-1][i][j+1] +
a[t-1][i+1][j] +
a[t-1][i][j-1]);

Question 8 Convert the above stencil code so to improve data locality using the method seen in course

Solution :

Data locality is improved by reducing the dependence distance

The dependence vectors are :

D = { ~d1 = (1,−1, 0),
~d2 = (1, 0, 0),

~d3 = (1, 0, 1),

~d4 = (1, 1, 0),

~d5 = (1, 0,−1)}.

First step consists in computing a set of hyperplanes (described by the normal vectors) which don’t
intersect the dependencies, therefore a hyperplane for which the normal vectors are perpendicular on the
dependency vectors.

H = {~r = (r1, r2, r3) ∈ R3|~r ~d1 = 0

~r ~d2 = 0

~r ~d3 = 0

~r ~d4 = 0

~r ~d5 = 0}

yielding the system :

r1 − r2 = 0

r1 = 0

r1 + r3 = 0

r1 + r2 = 0

r1 − r3 = 0

The only solution of this system is H = {(0, 0, 0)} ⇒ no totally independent loops to be pushed towards
the exterior of the loops, therefore no fixed rows of the U matrix.

5



The second step consists in calculating the vectors perpendicular to the previously found hyperplane
set (in the direction of the dependences).

C = {~φ = (r1, r2, r3) ∈ R3|~φ⊥H}

with the conditions :

r1 − r2 > 0

r1 > 0

r1 + r3 > 0

r1 + r2 > 0

r1 − r3 > 0

which imply :

~φ̇~d1 > 0

~φ̇~d2 > 0

~φ̇~d3 > 0

~φ̇~d4 > 0

~φ̇~d5 > 0

As there is no initial vector in H, the only conditions to be maintained are the ones above. These
conditions define a cone as shown in Figure 5 :

(1,−1,1)

(1,1,1)

(1,1,−1)

(1,−1,−1)

r3

r2
r1 > r3

r1 > −r3

r1 > 0

r1 > r2

r1 > −r2 r1

Figure 5 – cone defining where the τ vector lives

we choose 3 out of the 4 vectors generating the cone as a basis (1,−1, 1), (1, 1, 1), (1,−1,−1)

6



such that :

M =

 1 −1 1
1 1 1
1 −1 −1

 .

det(M) = −4⇒M is not unimodular therefore we need to make it unimodular :

We compute the inverseM−1, and we choose a = 2 such that aM has integer coefficients :

aM−1 = 2

 0 1/2 1/2
−1/2 1/2 0
1/2 0 −1/2

 =

 0 1 1
−1 1 0
1 0 −1

 = P.

The Hermite form of P , computed using Mupad, hermiteForm(2/n, All) gives :

U =

 1 −1 0
1 0 0
1 −1 −1

 , H =

 1 0 1
0 1 1
0 0 2

 .

We verify that the obtained matrix U verifies yields a transformation where the τ vector (normal to the
iteration hyperplane) is in the same direction as the dependency vectors :

Ud1 =

 2
1
2

 , Ud2 =

 1
1
1

 , Ud1 =

 1
1
0

 , Ud1 =

 0
1
0

 , Ud1 =

 1
1
2

⇒ Ud > 0∀d⇒ .correct tiling

Code generation :

The inverse of U is :

U−1 =

 0 1 0
−1 1 0
1 0 −1


we transform the code using :

 t1
t2
t3

 = U

 t
i
j


The initial iteration space :

do(t, i, j) ∈ I = {(t, i, j)|0 6 t 6 T, 1 6 i, j 6 N − 1}
S(t, i, j)

gets converted into :

7



do(t1, t2, t3) ∈ UI =

(t1, t2, t3)|
0 6 t 6 T
1 6 i, j 6 N − 1

∧
t1 = t− i
t2 = t
t3 = t− i− j


(t, i, j) = U−1(t1, t2, t3)⇔ t = t2, i = t2 − t1, j = t1 − t3
S(t, i, j)

Step 1 : fining the bound on t3

UI =

(t1, t2, t3)|
T > t2 > 0
t3 + 1 > t1 > t2 − 1
t2 −N + 1 > t1 > t3 −N + 1


which yields :

t1 −N + 1 6 t3 6 t1 − 1

producing the code :

for(t3 = t1−N + 1; t3 6 t2 − 1; )

Step 2 : fining the bound on t2 by eliminating t3 from the system

{(t1, t2)|0 6 t2 6 T ∧ t2 −N + 1 6 t1 6 t2 − 1}

which yields :

0 6 t2 t2 6 T
t1 + 1 6 t2 t2 6 t1 +N − 1

producing the code :

for(t2 = max(0, t1 + 1); t2 6 min(T, t1 +N − 1); )

Step 3 : fining the bound on t1 by eliminating t2 from the system

{(t1)| −N + 1 6 t1 6 T − 1}

producing the code :

for(t1 = −N + 1; t2 6 T − 1; )

The full code is :

for(int t1=-N+1; t1<=T-1; t1+=TILE_SLICE)
for (int t2=max(0,t1+1); t2<=min(T,t1+N-1); t2+=TILE_SLICE)

for (int t3=t1-N+1; t3<=t1-1; t3+=TILE_SLICE)
for (int tt1=t1; tt1<=min(t1+TILE_SLICE,T-1); tt1++)

for (int tt2=t2; tt1<=min(t2+TILE_SLICE,min(T,t1+N-1)); tt2++)
for (int tt3=t3; tt3<=min(t1+TILE_SLICE,t1-1); tt3++)

t=tt2; i=tt2-tt1; j=tt1-tt3;
a[t][i][j] = 1/5*(a[t-1][i-1][j] +

8



a[t-1][i][j] +
a[t-1][i][j+1] +
a[t-1][i+1][j] +
a[t-1][i][j-1]);

�

9


