
M1 - Compilation Bogdan Pasca

TD12 : Compiling OOLanguages - Tuesday, December 14

Exercise 1 Consider the following Java program :

class A {
int a = 0;
int x() { return a; }

};

class B extends A {
int b = 2;
int e = 4;
int y() { a = a - b + e; return a; }

};

class C extends A {
int c = 3;
int e = 5;
int x() { return a + e; }
int z() { e = a * c; return a; }

};

class Test {
public static void main (String[] args) {

A p = new B();
B r = new B();
C s = new C();
A t = new A();
p.x(); r.x(); s.x(); t.x();

}
};

Answer the following questions :

Question 1 The program instantiates three classes of objects (A, B, and C). Show class hierarchy and
the object layout.

Question 2 Can the e fields in classes B and C be placed at different offsets ?

Question 3 How does the compiler deal with polymorphism in this case ?

Question 4 How does the compiler deal with virtual methods ? How many different methods (i.e.,
assembly-level procedures) will be generated by the compiler for the above program? What are the names
of these methods ? Give their names in the “assemblerized” form classname methodname.

Question 5 Java permits a program to explicitly cast an object into another one. But there is a
complication : the Java language requires a ClassCastException to be thrown, when the cast is not possible.
What can the compiler do to allow for this possibility ?

Question 6 Draw the memory content at the end of main. Show the pointer links between the pointer
variables (p, r, s, t), objects, dispatch tables, and procedures. Note : Your picture should have four kinds of

1



nodes (pointer variables, objects, dispatch tables, and procedures) and one kind of edge (denoting points-to
relationship). The content of each pointer in the picture should be depicted as an edge to the target of the
pointer.

Question 7 Give the sequence of assembler instructions that implements the dynamic dispatch call
t.x(). Assume that the value of the variable t is stored in register R0. Assume that the VMTs and the CIRs
are laid out as you defined above. Comment your code fragment : what does each offset mean ? what does
each register contain ?

Exercise 2 Data Locality

Consider the code given below for computing a 2D Jacobi stencil :

for(int t=0; t<=T; t++)
for (int i=1; i<=N-1; i++)

for (int j=1; j<=N-1; j++)
a[t][i][j] = 1/5*(a[t-1][i-1][j] +

a[t-1][i][j] +
a[t-1][i][j+1] +
a[t-1][i+1][j] +
a[t-1][i][j-1]);

Question 8 Convert the above stencil code so to improve data locality using the method seen in course

2


