
M1 - Compilation Bogdan Pasca

TD11 : Register Allocation - Thuesday, December 7

Exercise 1 Register allocation in a basic block

Consider the following assembly code :

Load b -> R1
Load b -> R2
Mult R1 R2 -> R2
Make 4 -> R3
Load a -> R4
Load c -> R5
Mult R4 R5 -> R5
Mult R5 R3 -> R3
Sub R2 R3 -> R3

Question 1 What does this code compute and how many registers does it use ?

Solution : By analysing the state of the register at the end of the program :

Register Content
R1 b
R2 b2

R3 b2 − 4ac
R4 a
R5 ac

we can say that it computes b2 − 4ac using the 5 registers. �

Question 2 Write this code in the SSA form.

Solution :

Load b -> V1
Load b -> V2
Mult V1 V2 -> V3
Make 4 -> V4
Load a -> V5
Load c -> V6
Mult V5 V6 -> V7
Mult V4 V7 -> V8
Sub V3 V8 -> V9

1

�

Question 3 Do the register allocation with fixed ordering and a minimum number of registers. Use the
greedy algorithm seen in course.

Solution :

The next table represents the live range of registers during the execution of the previous code, using the
convention that a register dies before its last use :

code V1 V2 V3 V4 V5 V6 V7 V8 V9
Load b -> V1 |
Load b -> V2 | |

Mult V1 V2 -> V3 |
Make 4 -> V4 | |
Load a -> V5 | | |
Load c -> V6 | | | |

Mult V5 V6 -> V7 | | |
Mult V4 V7 -> V8 | |
Sub V3 V8 -> V9 |

As we can observe, 4 variables are alive at the same time, therefore, we need to use at least 4 registers in
order not to spill. The greedy algorithm, working from upper left to bottom right on the above table yields
the optimal solution. Moreover, we can remark that the interference graph of a linearized code is an interval
graph. As register allocation is a graph coloring problem, this makes register allocation trivially polynomial
due to the greedy algorithm. The obtained code is :

Load b -> R1
Load b -> R2
Mult R1 R2 -> R1
Make 4 -> R2
Load a -> R3
Load c -> R4
Mult R3 R4 -> R3
Mult R2 R4 -> R4
Sub R1 R4 -> R2

�

Exercise 2

We consider the program with the control flow graph given below. We consider that there are no live
variables at the output of the program.

Question 4 Give the alive variables for points 1 to 5 in the program.

Solution :
live(1) = {a, b, d}
live(2) = {a, b, c, d, f}
live(3) = {a, b, d}
live(4) = {e}
live(5) = {a, b, k, d}

�

2

k=b

c=a*b

b=k−c

e=d

d=e+1

c=a*b

f=b

c=c+b

f=f+a

2

1

3

5

4

entry point

exit

Figure 1 – Control flow graph

Question 5 Build the interference graph of the variables (nodes represent variables and edges represent
the interference between the variables). Using the interference graph, explain the difference if the code would
have been in SSA.

Solution : Here, the variable c introduces two disjoint live ranges. By representing these two by one
single node, we force the two variables to be stored in the same register. In our case, nothing changes because
the the interferences on c come from the second live range.

e

a

b

c

d

f

k

Figure 2 – Interference graph

�

Question 6

In order to perform a register allocation, propose a coloring of the obtained graph. How many registers
are there needed in order to execute the above code without needing to spill ?

Solution :

We obviously need 5 registers. �

3

e

a

b

c

d

f

k

C4

C5

C1

C1

C1

C2

C3

Figure 3 – Colored interference graph

Question 7 Consider now that we exchange the instructions : f = b and c = c + b so that the content
of the basic block becomes :

c=a*b
c=c+b
f=b
f=f+a

What are now the alive variables before the instruction f = b ? What about the number of colors needed
to color the interference graph ?

Solution :

Live(2) = {a, b, d}

We still need 5 colors. There is no interference between f and c, but the group {a, b, c, d, k} still forms a
clique. �

Question 8 The instruction exchange operation performed above is legal, because it does not change
the result of the program execution. Explain the conditions that the following two instructions must verify
such that they may be exchanged while preserving the same semantics of the execution :

x1 = y1 op z1
x2 = y2 op z2

Solution :

The instructions may be swapped if there is no dependency between them : no data dependency x1 6=
y2, x1 6= z2, no output dependence x1 6= x2, and no anti-dependence x2 6= y1, x2 6= z1. �

Question 9 One way to force 2 variables to share the same register is to join their nodes in the interference
graph (this allows reducing the number of moves between registers). Explain in what conditions is it legal
to join nodes in this way.

Solution : We can join them if the live ranges of the variables are disjoint (no edge in the graph between
them) �

4

Exercise 3 Node deletion problem (on the interference graph)

Typically, spilling is done during the coloring phase : if the greedy algorithm is blocked, one or several
variables are splilled in order to unblock it and lower the register pressure. In practice, on a basic block in SSA
form, we can find, beforehand a sufficient set of nodes to be removed such that the resulting interference graph
is k-colorable : it is enough to decrease the maximum number of variables alive simultaneously, MAXLIVE,
to k (the number of registers). In other words, we have to remove live intervals until MAXLIVE is k.

Question 10 Consider a set of live intervals {I1, ..., In} on a basic block ; k the number of registers. Give
a polynomial algorithm which eliminates a minimum number of intervals s.t. MAXLIVE becomes smaller
than k. Solution :

Theorem 0.1 (Furthest First). The spill everywhere problem for an interval graph is polynomially solvable,
with a greedy algorithm, if w(v) = 1 for all v even if r is not fixed.

The algorithm behind this theorem is the well-known furthest use strategy described by Belady (L. A. Be-
lady. A study of replacement algorithms for a virtual storage computer. IBM Systems Journal, 5(2) :78–101,
1966.). This strategy is very interesting for designing spilling heuristics on the dominance tree. We give here
a constructive proof for completeness.

Proof An interval graph is the intersection graph of a family of sub-sequences of a (graph) chain. For
convenience, we denote the chain as B, vertices of B are called points, and sub-sequences of B are called
variables. Consecutive points are denoted by p1, . . . , pm, and the set of variables is denoted by V . Once
variables are removed (spilled), the remaining set of variables V ′ is called an allocation. An allocation is said
to fit B if, for each point p of B, the number of remaining variables intersecting p is at most r. The goal is
to remove a minimum number of variables such that the remaining allocation fits B. The greedy algorithm
can be described as follows :

1. (init) Let V0 = V ′ and i = 1 ;
2. (find first) Let p(i) be the first point from the beginning of the chain such that more than r remaining

variables, i.e. in Vi−1, intersect intersect p(i) ;
3. (remove furthest) Select a variable vi that intersects p and ends the furthest and remove it, i.e., let

V ′i = Vi−1\{vi} ;
4. If V ′i fits B, stop, otherwise increment i by 1 and go to Step 1.

Let us prove that the solution obtained by the greedy algorithm is optimal.

Consider an optimal solution S (described by a set VS of spilled variables) such that VS contains the
maximum number of variables vi selected by the greedy algorithm.

Suppose that S does not spill all of them and denote by vi0 the variable with smallest index such that
vi0 /∈ VS . By definition of pi0 in the greedy algorithm, there are at least r+1 variables not in {v1, . . . , vi0−1}
intersecting p(i0). As S is a solution, there is a variable v in VS (thus v 6= vi0) that intersects p(i0). We claim
that spilling W = VS ∪{vi0}\{v}, i.e., spilling vi0 instead of v, is a solution too. Indeed, for all points before
p(i0) (excluded), the number of variables in V

′

i0−1 = V \{v1, . . . , vi0−1} is at most r. Since {v1, . . . , vi0} ⊆W ,
this is true for V \W too. Furthermore, each point p after p(i0) (included), intersected by v, is also intersected
by vi0 by definition of vi0 . Thus, as p is intersected by at most r variables in V \VS, the same is true for
V \W . Finally, this solution spills more variables vi than S , which is not possible by definition of S . Thus
VS contains all variables vi and, by optimality, only those. This proves that the greedy algorithm gives an
optimal solution.

Proof is given in : F. Bouchez, A. Darte and F. Rastello, “On the complexity of spill everywhere under
SSA form”, 2007.

5

�

Question 11 Spilling a variable which has many uses is usually more expensive than spilling a variable
which has few uses. In fact we can ponderate the intervals with an approximation of the splilling cost. Is
there a polynomial time algorithm for solving this problem ? Hint : Express this problem as an ILP problem.
We know that ILP problems with totally unimodular matrices are solvable in polynomial time. See also, F.
Bouchez, A. Darte and F. Rastello, “On the complexity of spill everywhere under SSA form”, 2007.

6

