
Compilation 2010 B. Pasca

TP 2 : Lexical Analysis
bogdan.pasca@ens-lyon.fr

21 September 2010

1 Lexical Analysis

1.1 Regular expressions and finite automata

Exercise 1 Warm-up : Describe using regular expressions, the following :
a. the keyword if
b. a variable name in C
c. an integer number
d. a floating point number ; examples : 2.76, −5., .42, 5e+ 4, 11.22e− 3.
e. an integer number different from 42.
f. an integer number strictly greater than 42.
g. binary numbers n such that there exists an integer solution to an + bn = cn

Exercise 2 Convert the following regular expressions into nondeterministic finite automata
using Thompson’s construction. What are the drawbacks of this approach ?

a. (if |then|else)
b. a((b|a∗c)x)∗|x∗a
Convert these NFAs to a DFAs using the subset construction.

Exercise 3 Construct a DFA that recognizes balanced sequences of parenthesis with a maximal
nesting depth of 3, e.g., ε, ()(), (()(())) or (()())()() but not (((()))) or (()(()(()))).

Exercise 4 Given that binary number strings are read with the most significant bit first and
may have leading zeros, construct DFAs for each of the following languages :

a. Binary number strings that represent numbers that are multiples of 4, e.g., 0, 100 and
10100.

b. Binary number strings that represent numbers that are multiples of 5, e.g., 0, 101, 10100
and 11001.

c. Given a number n, what is the minimal number of states needed in a DFA that recognises
binary numbers that are multiples of n ?

Exercise 5 Minimize the following DFA :

1

Compilation 2010 B. Pasca

Exercise 6 Here is one algorithm for minimizing an automaton :
Step 1 Remove unreachable states.
Step 2 Mark the distinguishable pairs of states. To achieve this task, we first mark all pairs
p, q, where p ∈ F and q /∈ F as distinguishable. Then, we proceed as follows :

repeat
for all non-marked pairs p, q do

for each letter a do
if the pair δ(p, a),δ(q, a) is marked
then mark p, q

until no new pairs are marked

Step 3 Construct the reduced automaton A∗.
We first determine the equivalence classes of the indistinguishability relation. For each state q,
the equivalence class of q consists of all states p for which the pair p, q is not marked in Step 2.

The states of A∗ are the equivalence classes. The initial state q0∗ is this equivalence class
that contains q0. The final states F ∗ are these equivalence classes that consist of final states of
A. The transition function δ∗ is defined as follows. To determine δ∗(X, a), for some equivalence
class X , pick any q ∈ X , and set δ∗(X, a) = Y , where Y is the equivalence class that contains
δ(q, a).

Apply this minimization algorithm to the example below :

2

Compilation 2010 B. Pasca

Exercise 7 Try to compress the transition table for the above automaton using the the comb
algorithm(row displacement).

Exercise 8 Use Earley’s method for creating a lexical analyzer automatically for detecting
integer and floating-point numbers.

The full exercise

Exercise 9 If you have solved the exercises in the previous section, then you know how we
can convert a language description written as a regular expression into an efficiently executable
representation (a DFA). Now, we want to do something more : a program for lexical analysis,
i.e. a lexer. It has to distinguish between several different types of tokens. For this exercise
consider that the tokens can be : INTEGER, FLOAT, keyword IF, VARIABLE. Each of these
are described by its own regular expression as in exercise 1. If there are several ways to split
the input into legal tokens, the lexer has to decide which of these it should use. The simplest
(dumb) approach would be to generate a DFA for each token definition and apply the DFAs
one at a time to the input. Think about a smarter and faster way to generate a single DFA and
test for all the tokens simultaneously. For this, use a principle similar to the previous section :

a. Create NFAs for each regular expression involved.
b. What are the accepting states of these NFAs ?
c. Think about a way to combine them in a single NFA.
d. Convert the combined NFA to a DFA
e. Can the same accepting state in the DFA accept several different token types ? If so, give

a priority based scheme for solving this problem.
f. When we described minimisation of DFAs, we used two initial groups, one for accepting

states and one for non-accepting states. How many initial groups do we have to use
now ?

g. Compress the transition table.

3

	Lexical Analysis
	Regular expressions and finite automata

