
LOW-COST MULTIPLIER-BASED FPU FOR EMBEDDED PROCESSING ON FPGA

Bogdan Pasca

Altera European Technology Centre, UK

ABSTRACT

Industrial applications often require processing data with

large dynamic ranges at low sample rates. As algorithms

become more complex, handling the data range of variables

required for fixed-point implementations becomes time con-

suming, and can also lead to inefficient designs. Floating-

point solutions leverage these limitations trading an auto-

matic data range handling for a usually higher implementa-

tion cost. The acceptance of floating-point solution for this

class of applications is conditioned by area and while meet-

ing performance requirements. In this paper we present a

low-cost floating-point unit which can either be used stan-

dalone, or can be attached to a RISC microprocessor. The

proposed unit targets modern, multiplier-based FPGAs, com-

putes efficiently costly operations: ×, ÷, 1/x,
√

x and 1
√

x,

requires less than 700LE and 4-9bit multipliers on a Cy-

cloneIV and runs close to 150MHz.

1. INTRODUCTION

Industrial applications often work with low sample rates.

The low throughput requirement of these applications is ideal

for processor based implementations [1]. Existing RISC

processor implementations on FPGAs can be sufficiently ef-

ficient when dealing with integer datatypes which are di-

rectly supported in silicon. Software libraries offering fixed-

point data-types and associated functions use the underlying

integer hardware [2]. The performance of applications using

these depends on the fixed-point types used – the wider the

slower, and the operation types – square root will be slower

than multiplication.

As algorithms become more complex using wide fixed-

point formats in order to cope with the range problems be-

comes inefficient. Floating-point arithmetic overcomes these

limitations to automatically cope with the dynamic range

of data. Adding floating-point support to a processor im-

plementation can also be done by using software libraries:

GCC, Glibc, µClibc, GoFast Floating-Point Library, [3] for

VLIW. Depending on the processor frequency and architec-

ture the performance provided by this solution might be suf-

ficient for some classes of applications. In the FPGA context

low-cost devices such as CycloneIV [4] will run soft-core

processors like NiosII [5] at frequencies which can reach

150MHz. The long latencies associated to floating-point

operations combined with the low frequency yields delays

which are too large for our industrial class of applications.

One solution for this low-cost FPGAs is to enhance the

processor with a dedicated floating-point unit (FPU). The

FPGA reconfigurability enables users to instantiate custom

FPUs which match the performance requirements of the tar-

get application.

Real application data suggests that the operations to have

in the dedicated floating-point coprocessor include: +, −,

×, ÷, comparators, min/max units, but also
√

x, 1/
√

x and

1/x [6]. Some operators which are pervasive in user de-

signs +,−,× usually need to be fully pipelined to offer high

throughput; others such as comparators and min/max units

need to have very low latencies, typically 1 or 2 cycles; less

frequently encountered ones ÷,1/x,
√

x,1/
√

x need to have

reasonably low latencies (10-30 cycles for single precision)

and require few resources.

In this paper we focus on providing an efficient imple-

mentation for the FPU section handling less frequently en-

countered operations such as÷,1/x,
√

x,1/
√

x. The proposed

architecture uses the Newton-Raphson algorithm for com-

puting the inverse and the inverse square root and uses these

values for computing the division and the square root. The

fixed-point datapath of the floating-point architecture first

extracted, minimized and mapped on a small fixed-point mul-

tiplier, a subtracter and a well chosen network of multiplex-

ers. The size of the multiplexers is selected so that is maps

well to FPGAs. The tight operation scheduling extracts in-

struction level parallelism in order to reduce latency. The

results demonstrate that a suited unit for these applications

can be built using less than 700 logic elements (LE) and

4-9bit multipliers on a CycloneIV and can close timing at

close to 150MHz.

The rest of the paper is organized as follows: after a

brief overview of floating-point arithmetic and the general

Newton-Raphson technique in Section 2 we start present-

ing our algorithm in Section 3 by first extracting the algo-

rithmic fixed-point datapath for our floating-point functions;

next we compute the minimum datapath width for a fixed-

point datapath capable of performing all these functions.

The Newton-Raphson algorithm is selected for computing

the mantissa datapath, and based on implementation trade-

offs the number of iterations is determined; the operations

are then tightly scheduled on the minimal hardware archi-

tecture. The implementation is presented in section 4 and

Section 5 presents the synthesis results and latencies of the

supported operations and also presents a discussion around

the possible extensions of this work. In section 6 we present

the conclusions and open research topics based on this work.

2. BACKGROUND

The IEEE-754 standard on binary floating-point arithmetic

(revised in 2008 [7]) uses a triplet (sign, exponent, fraction)

to represent a floating-point number:

x = (−1)s2e1. f

The number of bits used to store the exponent and frac-

tion (wE and wF) define the formats of the IEEE-754 stan-

dard. Some of the most commonly used formats are wE = 8

and wF = 23 for single-precision and wE = 11 and wF = 52

for double precision. Custom formats (pairs of wE ,wF not

specified in the standard) are used to bridge the precision

gap between single and double precision. These formats can

be used to exploit the flexibility of FPGAs and outperform

microprocessors [8].

Newton-Raphson technique is a well known iterative method

for determining a root y of a function f (y) starting with an

initial value y0 [9, 10]. Under certain conditions, subsequent

iterations will converge quadratically towards the root of the

function, doubling the accuracy with each iteration. The re-

currence formula for the general case is given by:

yn+1 = yn− f (yn)/ f ′(yn)

The method may determine the inverse of a number x

by finding the root y of a function f (y) = 1/y− x having

f ′(y) = −1/y2. The recurrence formula for the inverse of a

number is therefore:

yn+1 = 2yn− xy2
n (1)

The method may similarly determine the inverse square

root of a number x by having the function f (y) = 1/y2− x

with f ′(y) =−2/y3. The recurrence formula for the inverse

square root is:

yn+1 = yn(1.5−
xy2

n

2
) (2)

3. ALGORITHM

3.1. Fixed-point kernel extraction

The kernel computation of most floating-point operations is

in fact a fixed-point operation. Therefore, the first step in im-

plementing the proposed functions in the FPU is to identify

the fixed-point computing kernels. Once identified and once

decided on what algorithm is used for each function, we will

try to fuse the kernel implementations. The main objective

for constructing the fused fixed-point kernel is sharing as

many resources as possible.

In this paper we focus on the Newton-Raphson approx-

imation technique for implementing the fixed-point kernels.

We have chosen this method because 1/ the recurrences are

sufficiently simple both for the inverse and inverse square

root requiring only multiplications and subtractions; these

resources are available in all recent FPGAs and 2/ the method

has a quadratic convergence doubling the accuracy with each

iteration; this allows for shorter latencies than the digit re-

currence methods. An alternative approach still under in-

vestigation is to reuse the piecewise polynomial approxima-

tion techniques presented [11] and implemented in [12] with

fewer polynomials but of higher degree for each function.

3.1.1. Inverse Square Root implementation details

Let: x = (−1)s2e1.Fx and f (x) = 1/
√

x. For x < 0 (except

negative for which f (−0) = 1/− 0 = −∞) the function re-

turns NaN. In the general case f (x) = 1/
√

2e1.Fx. We distin-

guish two cases for the result:

r =

2−
e
2

1
√

1.Fx
= 2eR 1

√
1.Fx

: e is even

2−
(e−1)

2
1

√
2× 1.Fx

= 2eR 1
√

2× 1.Fx
: e is odd

For inputs with an even exponent and Fx = 0 the com-

puted exponent of the result eR will also be the final ex-

ponent of the result. For the other cases, since 1√
1.Fx
∈

(1/
√

2,1) and 1√
2×1.Fx

∈ (1/2,1/
√

2] a normalization stage

is necessary. During this stage the fraction of the result is

brought into the [1,2) by multiplying it by 2 while decre-

menting the exponent eR← eR− 1.

Regarding the fraction computation, we essentially need

to compute the inverse square root for a function 1/
√

z where

z ∈ [1,4).

3.1.2. Square Root implementation details

Let: x = (−1)s2e1.Fx and f (x) =
√

x. For x < 0 (except

f (−0) = −0) the function returns NaN. In the general case

f (x) =
√

2e1.Fx we distinguish two cases, similar to the in-

verse square root:

r =

{
2e/2
√

1.Fx : e is even

2
e−1

2

√
2× 1.Fx : e is odd

As it can be observed in both cases, the right-hand square

root term is ∈ [1,2), hence no normalization is necessary.

In terms of the fraction, we essentially need to compute

the square root of a function
√

z where z ∈ [1,4). An ef-

ficient FPGA implementation of the square root operator

which uses the piecewise polynomial approximation tech-

nique can be found in [13]. In this paper we focus on an-

other multiplicative technique, Newton-Rapshon which has

fewer memory block requirements.

3.1.3. Reciprocal implementation details

Let: x= (−1)s2e1.Fx and f (x) =
1

x
. The function is defined

for the entire range of x: f (−0) =−∞, f (+0) = +∞ and in

the general case:

f (x) =
1

2e1.Fx
= 2−e 1

1.Fx
= 2eR 1

1.Fx
1

1.Fx
∈ (1/2,1)→ normalize

Let eR be the temporary exponent value pre normaliza-

tion. When the result is in (1/2,1) the new exponent is

eR← eR− 1. Regarding the fraction computation, we need

to compute the inverse 1/z for z ∈ [1,2).

3.1.4. Division implementation details

Let: x = (−1)sx2ex1.Fx, y = (−1)sy2ey1.Fy and f (x,y) =
x

y
.

Division has a few cases for which the result is NaN:
0/0,∞/∞. In the general case,

f (x) =
(−1)sx2ex1.Fx

(−1)sy2ey1.Fy
= (−1)sR2ex−ey 1.Fx

1.Fy

The term 1.Fx/1.Fy belongs to the interval (1/2,2). Let

eR = ex− ey be the temporary exponent. We distinguish

two cases in determining the final exponent value:

eR =

{
eR : 1.Fx/1.Fy ∈ [1,2)
eR− 1 : 1.Fx/1.Fy ∈ (1/2,1)

Division will be implemented as the inverse of y multiplied

by x and hence the procedure to compute the fraction will

consist of fist computing the fixed-point inverse of y and

then multiplying it by the fraction of x. A similar imple-

mentation for the divider can be found in [14] where the

piecewise polynomial approximation and Newton-Raphson

techniques are combined in the context of a high throughput,

low latency operator.

3.1.5. Multiplication implementation details

Let: x = (−1)sx2ex1.Fx, y = (−1)sy2ey1.Fy and f (x,y) =
x× y. Similar to division, for specific inputs the function

returns NaN: 0×∞.

In the general case:

f (x) = (−1)sx2ex1.Fx× (−1)sy2ey1.Fy

= (−1)sR2ex+ey1.Fx× 1.Fy

The term 1.Fx× 1.Fy will be ∈ [1,4). When this result

is ∈ [2,4) a normalization is required. Let eR = eX + eY be

the temporary exponent value. Normalization consists in:

eR =

{
eR : 1.Fx× 1.Fy ∈ [1,2)
eR+ 1 : 1.Fx× 1.Fy ∈ [2,4)

3.2. Minimal Datapath Width

We denote by (wE,wF) the floating-point format and we tar-

get faithful rounding (the returned result can be any of the 2

floating-point numbers closest to the mathematical result of

the operation; for more details see [15]). Faithful rounding

allows for an error budget of 1 unit in the last place – ulp

(which is the distance between 2 floating-point numbers).

When rounding the running fraction value to the output for-

mat the smallest maximum error is obtained for rounding to

nearest, and has a value of 0.5ulp. This leaves 0.5ulp for the

approximation error budget.

This calculation assumes that the fraction has been nor-

malized and that the approximation error of 0.5ulp holds af-

ter normalization. In other words, we need to produce a

fraction result having 1+wF + 1 meaningful bits (first ’1’

is the implicit one) and the approximation error is smaller

than 0.5ulp (the magnitude of the LSB) after normalization.

In section 3.1 we have shown that the dynamic data range

for the fraction calculation belongs to the interval [1/2,4).
When the values are in [1/2,1) the MSB will be in binary

position -1 and 1+wF + 1 bits (25 for single precision) are

required to the right. When the values are in (4,2] the MSB

will be in binary position 1. Between the 2 extreme cases,

the fraction computation datapath will require 2+1+wF+
1 bits (27 in single-precision). This proves that both inputs

and outputs can be represented with sufficient accuracy us-

ing our proposed format (2 integer bits, 1+wF + 1 frac-

tional).

We next need to show that the internal datapaths compu-

tation do not exceed this format. All the computed fractions

belong to [1/2,4).

3.2.1. Inverse square root

The Newton-Raphson technique is used for the fixed-point

mantissa calculation of the inverse square root. The tech-

nique inputs an initial approximation, accurate to a number

of bits, and uses a number of iterations to converge to the fi-

nal result using Eq.2. For single precision we need to make

sure that there are at least 1+wF + 1 = 25 significant bits

after the iterations (meaning that the error needs to less than

1ulp). It is well known that Newton-Raphson technique has

quadratic convergence, meaning that it doubles the accuracy

(number of significant digits in the result) with each itera-

tion. Using this information we chose an initial approxima-

tion of 7 bits and we target 2 iterations so that our results

are sufficiently accurate. For a detailed error analysis of the

error of Newton-Raphson iteration see [16].

The inverse square root has two distinct cases. For an

even input exponent the initial approximation is obtained

from a table indexed by the leading bits of 1.Fx. The val-

ues for this initial approximation belong to (1/
√

2,1]. For

the odd exponent a secondary table is indexed by the lead-

ing bits of 1.Fx. However, the function tabulated now is√
2× 1.F having an image in (1/2,1/

√
2]. The two logi-

cal tables (one for each case) are fused in one physical table

which is indexed by the by concatenating the exponent par-

ity bit to the MSB of the 7-input address. The output fixed-

point semantic of the table will be 1.6 (1 bit of integer, 6 of

fraction).

One can observe that except for e even and first 6 leading

bits of Fx zero, the most significant bit of the table is always

zero. We can therefore store only the 6 leading bits in the

table and apply a mask at the table output to obtain the final

result.

The Newton-Raphson iteration used is presented in Equa-

tion 2. First, the initial approximation is read from the table

then it gets squared (y2
0). Since the initial approximation is

in (1/2,1] squaring would produce a the result in (1/4,1].

Next, the result gets multiplied by the input x which is in

[1,4) (xy2
0). Using basic interval arithmetic we can clearly

see that the resulting interval will be in (1/4,4), which does

not overflow on the 2.25 target format. However, looking

closer at the calculation we observe that the returned value

is close 1 (since the computation is x×1/
√

x̃
2

where x̃ is an

approximation of x by selecting the most significant digits).

Dividing this value by 2 returns a value in the 0.5 range

and subtracting this value out of 1.5 will return again a value

close to 1. Since the calculation will always return a posi-

tive value the following multiplication can be performed on

unsigned data. The result of multiplying the initial value of

the approximation by this value close to 1 produces a new

approximation y1 which is twice as accurate. The whole it-

eration is performed once more in order to obtain y2 which

will be accurate to at least 25 significant bits.

For single precision the entire calculation can be per-

formed using a a 27-bit wide datapath. Looking at the oper-

ations used to calculate the inverse square root we identify

that fixed-point multipliers, a fixed-point subtracter and ta-

bles containing initial approximations are the main compute

units.

3.2.2. Inverse

The inverse is implemented similarly, using the Newton-

Rapshon technique presented to Equation 1. The input to

the calculation is in the [1,2) interval having an output in

(1/2,1]. We target 7 bits of precision for the initial approx-

imation. For reducing the size of the table we use a similar

technique separating the case when x̃ = 1, for which the ap-

proximation result is also 1.

In the first iteration y0 ∈ (1/2,1] is squared y2
0 ∈ (1/4,1].

This is then multiplied by x ∈ [1,2) resulting in a worst case

interval of (1/4,2). However, accounting for the depen-

dency between x and y0 we can reduce the second interval

to (1/2,1]. In fact, the product xy2
0 will be very close to

the value of the inverse of x. This information is used for

bounding the resulted interval of the last subtraction which

now will produce a positive result being twice as accurate. A

subsequent iteration is required for obtaining y2 which will

be accurate to at least 25 significant bits.

3.2.3. Square root and division

The result after 2 iterations will produce y2 ∈ (1/2,1] for

both the square root and the division. This result needs to

be multiplied by x ∈ [1,2). For division the inverse was cal-

culated on y. The resulting interval will be (1/2,2). Before

returning the final result a normalization is necessary if the

result is in (1/2,1).

3.2.4. Multiplication

The two inputs in [1,2) will produce a result in [1,4) and

will require normalizing if in [2,4).

4. IMPLEMENTATION

The high-level diagram of the floating-point unit is presented

in Figure 1. The two data inputs (X and Y) together with

the control signals (N – going high for one cycle together

with the new pair of data inputs and Op – denoting the code

of the operation to be executed) are the inputs of the com-

ponent. The main computational blocks are: 1/ FPU core

which computes iteratively the fixed-point kernel values for

each operation; Pre/Post Exponent Handling blocks comput-

ing exponents for the functions; Pre/Post Exception Handlin

blocks computing the exception cases for the functions; the

Control FSM controlling the execution of both the FPU Core

but also of the buffering registers; Normalize/Round block

which is required to normalize and round the result produced

by the FPU Core which belong to the interval (1/2,4).

The core raises done when the operation completes and

the result can be read from the output register regO.

The multiplier-based core, capable of performing 5 op-

erations is detailed in Figure 2. The main units of this core

are a 27-bit fixed-point multiplier, a fixed-point subtracter

and a unit providing the initial approximation values for

the inverse and inverse square root. These units are inter-

connected using a network of multiplexers. The inputs to

CE_D
CE_E

regX regY

Pre
Exponent
Handling

Pre
Exception
Handling

Post
Exception
Handling Handling

Exponent
Post

regO

Y

CE A
CE B
CE C

MuxSel

Control
FSM

rOpopN

regOP

OP

Exception Pack

R done

CORE

FPU
fracYfracX

expYexpX fracX fracY

N X

Normalize and Round

Fig. 1. High level diagram of the multplier based FPU

D

1.5

B CA

27(2.25)

27(2.25) 27(2.25) 27(2.25) 27(2.25)

27(2.25)

E

FracRes

01.Fy001.Fy000

01.Fx00

3 cycles

7(1.6)

7(1.6)

addr_inv

Approx
Table

Initial

addr_invSqrt

0 1 2 3 0 1 2 3 0 1 2 0 1

0 1

0 1

10

Fig. 2. The multiplier-based core of the floating-point unit

both the multiplier and the subtracter are registered, with the

enable lines of these register being controlled by the Con-

trolFSM. The size of the multiplexers is deliberately kept

small which allows implementing them using one level of

look-up tables. The static shift blocks feeding the subtracter

unit do not take any logic and will be implemented as a sim-

ple rewiring.

The fully distributed way this FPU unit is built allows

performing a tighter operation scheduling which significantly

reduces the latency of operations. Figure 3 presents a com-

parison between a regular, sequential operation scheduling

for the inverse square root computation and the parallel, op-

timized scheduling of our unit.

In the optimized version, since the inputs to the approxi-

mation table ROM are combinatorial and the table is imple-

mented using distributed memory, the outputs are available

at the same cycle. Therefore, reading the approximation and

writing it back for squaring to the input registers of the mul-

tiplier is performed in one clock cycle. The multiplication

takes two cycles and the resulting product will then need to

M

B

A

B

M

Sh

CD

S

A

Ap

Ap

B

Ap A B

M
B

A

M
C

D

S Ap

A B

M

A B E

Ap

M

S

Approximation register

Multiplier

Subtracter

Right Shift

...

9

15

Fig. 3. Tight computation scheduling

be multiply by x. Fetching the value of x in the input B reg-

ister of the multiplier is therefore done in parallel with the

multiplication.

Similarly, following the second multiplication xy2
0 the

product will need to be shifted right and then subtracted

from the value 1.5. This shifting and buffering into the in-

put register of the subtracter is done in one cycle together

with preparing the C input of the subtracter. Parallel with

the subtraction the approximation y0 is read from the ap-

proximation table and both the difference 1.5− xy2
0/2 and

y0 will be buffered in the input registers of the multiplier.

Multiplication is performed and result written to the A and

E registers, ready for the next iteration.

In comparison with a regular scheduling of these opera-

tions on a unit non optimized for these specific computations

the latency reduction for the first iteration is from 15 cycles

to 9 cycles, or roughly 40%.

The detailed description of the control FSM is depicted

in Figure 4. It shows the steps required for each operation

and groups the states in order to depict the operations be-

ing performed during these states. From left to right the

states corresponding to the inverse square root, square root,

inverse, division and finally multiplication are depicted.

Since a significant part of the stages used by both square

root and division are in fact common to the correspond-

ing inverse square root and inverse stages, these stages are

factored out. For instance, when transitioning from stage

iSqrt 20 depending on the operation code one would carry

on into stage sqrt s0 if the operation code for square root

was valid, or would carry on into stage iSqrt 21 and then

back to idle. A similar decision is being taken transitioning

from state inv s16 for continuing with division or preparing

the output result of the inverse.

Since the stages performing the mantissa multiplications

essentially consist in one multiplication, the division stages

corresponding the the multiplication between x and the in-

verse will be shared between the division and the multipli-

cation.

idle

iSqrt s1

iSqrt s2

iSqrt s3

iSqrt s4

iSqrt s5

iSqrt s6

iSqrt s7

iSqrt s8

iSqrt s9

iSqrt s10

iSqrt s11

iSqrt s12

iSqrt s13

iSqrt s14

iSqrt s15

iSqrt s16

iSqrt s17

iSqrt s18

iSqrt s19

iSqrt s20

iSqrt s21

sqrt s1

sqrt s2

sqrt s3

inv s16

inv s1

inv s2

inv s3

iSqrt s0 inv s0sqrt s0

inv s4

inv s5

inv s6

inv s7

inv s8

inv s9

inv s10

inv s12

inv s11

inv s13

inv s14

inv s15

div s0

div s1

div s2

div s3

mul s0

inv s17

state Table read

state Multiply state

state Subtract state

state RegE state

n=1 and (op=000 or op=001) n=1 and (op=010 or op=011)

n=1 and op=110

op=000

op=010y(1.5
−

x
y

2/
2)

1.5− xy2/2

x
×

y
2

y
2

Iteratio
n

2

y
2

x
×

y
2

x
×
(1/ √

x)

2y− xy2

Iteratio
n

2

x
×
(1/

y)

op
000 - iSqrt

001 - sqrt

010 - inv

011 - div

100 - mul

Fig. 4. Detailed scheme of the control FSM

Operation Latency Fast Latency Slow Resources

1/
√

x 23 cycles 17 cycles
693/664 LEs√

x 26 cycles 19 cycles

1/x 19 cycles 15 cycles 4 9-bit mults

x/y 22 cycles 17 cycles

x×y 6 cycles 5 cycles

Table 1. Supported functions latencies for fast mode

155MHz and for slow mode 105MHz on Cyclone-IV de-

vices, slowest speedgrade (C7)

5. RESULTS AND DISCUSSION

Table 1 presents the latencies for the supported functions for

both the fast and slow versions of the unit on a Cyclone-

IV device. The main difference between the fast and the

slow versions is the number of pipeline stages in the fixed-

point multiplier with fast having 3 stages and slow having

2 stages. In terms of performance, the fast version cor-

responds to a working frequency close to 150MHz on the

lowest speedgrade Cyclone-IV device (slowest) whereas the

slow version reaches roughly 105MHz on the same device.

The total number of logic elements used by the imple-

mentation is 693 for the fast version (664 for the slow ver-

sion), together with a 4 9-bit multiplier elements (2 DSPs).

The presented unit is based on convergence-based algo-

rithms and therefore we can take advantage of this and return

a potentially less accurate result in fewer cycles. For the tar-

geted single precision wide datapath we can return a result

either after:

• fetching the initial approximation from memory; this

would correspond to approximately 2 decimal digits

of accuracy.

Operation Fast Fast (half) Slow Slow (half)

1/
√

x 23 cycles 13 cycles 17 cycles 10 cycles√
x 26 cycles 16 cycles 20 cycles 12 cycles

1/x 19 cycles 10 cycles 15 cycles 8 cycles

x/y 22 cycles 17 cycles 18 cycles 10 cycles

x×y 6 cycles - 5 cycles -

Table 2. Operation latency for early terminations (after 1

Newton-Raphson iteration) in both the fast and slow case

• after one iteration; the accuracy of the result will roughly

be 4 decimal digits.

The modifications to the control FSM are minor in or-

der to support these options. The latency of the operations

will be significantly shorter for these cases. Table 2 presents

these values for both the fast and the slow architectures.

The current architecture can easily be ported to more re-

cent targets such as the CycloneV/ArriaV devices. Due to

the extended capabilities of the DSP block in these devices

the 27× 27-bit multiplication can now be performed in 2

cycles at high frequencies in one single DSP. On one hand,

the latencies for the operations will now be equal to what

we presented so far as the slow Cyclone-IV version. On

the other hand, the frequency is expected to be significantly

higher in these devices. Preliminary results on a CycloneV

C8 (slowest speedgrade) show that the version having 2 cy-

cles for the multiplier now requires 243ALMs, 1DSP and

runs at 148MHz (105MHz for CycloneIV) and on ArriaV

(C4 speedgrade) the frequency is 371MHz.

When extending the architecture to support higher pre-

cisions such as double (binary64) there is a tradeoff to be

made between the number of DSPs used for the multiplica-

tion and the latency of the operations. Additionally, a double

precision unit will probably need to support single precision

as well, and possible other precisions in between these two,

possibly supporting early termination.

The simple extension is to actually perform folding in-

side the multiplier block and keep everything else unchanged.

The initial approximation tables are sufficiently accurate to

cover the double-precision case since 7x2x2x2=56.

The presented architecture is an iterative one, accepting

one new set of inputs only when the current operation is

done. However, the multiplication is currently implemented

in a fully pipelined way and hence the unit could potentially

be modified to accept one set of inputs per cycle providing

that the operation is multiplication. This would clearly have

a positive effect on performance and would require very lit-

tle logic to implement.

Additionally, we can modify the architecture so that it

accepts an new set of inputs for multiplication even if the

unit is already processing some other operation. This can be

accomplished by splitting the output port and dedicating one

pair of data/done for multiplication.

6. CONCLUSION

We have presented in this paper a floating-point unit tar-

geting industrial applications and having 5 functional units:
1/
√

x,
√

x, 1/x, x/y, x× y. The advantage of this fused iter-

ative unit are 1/ its low resource usage, requiring less than

700 logic elements and 4 9-bit multipliers on a Cyclone-

IV FPGA and 2/ its frequency and 3/ its flexibility with the

early termination cycles. We also raise in this paper several

questions about implementation alternatives and tradeoffs

for higher precisions (latency vs. DSPs), combining higher

and lower precisions (support single and double in one unit),

concurrency (fully pipelined multipliers, multiplier in paral-

lel with other function, 2 single multiplications in parallel in

the double-precision version of the unit). These questions

correspond to new research directions opened by this work.

7. REFERENCES

[1] Altera Corporation, 2011. [Online]. Available: http://www.altera.

com/literature/wp/wp-01154-flexible-industrial.pdf

[2] M. Moise, “Fixed point arithmetic library for SpiN-

Naker,” Master’s thesis, University of Manchester, School

of Computer Science, Sept. 2011. [Online]. Avail-

able: http://studentnet.cs.manchester.ac.uk/resources/library/thesis

abstracts/MSc12/FullText/Moise-Mircea-fulltext.pdf

[3] G. Revy, “Implementation of binary floating-point arithmetic on em-

bedded integer processors - polynomial evaluation-based algorithms

and certified code generation,” Ph.D. dissertation, Université de Lyon

- École Normale Supérieure de Lyon, 46 allée d’Italie, F-69364 Lyon

cedex 07, France, December 2009.

[4] CycloneIV Device Handbook, 2013, http://www.altera.com/literature/

hb/cyclone-iv/cyclone4-handbook.pdf.

[5] Nios II Processor Reference Handbook, feb 2014, http://www.altera.

com/literature/hb/nios2/n2cpu nii5v1.pdf.

[6] User Reference Manual – Digital Signal Controller; Gen-

eral Functions Library, 2011, http://cache.freescale.com/files/

microcontrollers/doc/user guide/56800E GFLIB.pdf?fpsp=1.

[7] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008,

pp. 1–58, 29 2008.

[8] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and R. Tudoran,

“When FPGAs are better at floating-point than microprocessors,”

École Normale Supérieure de Lyon, Tech. Rep. ensl-00174627, 2007,

http://prunel.ccsd.cnrs.fr/ensl-00174627.

[9] T. J. Ypma, “Historical development of the newton-raphson method,”

SIAM Rev., vol. 37, no. 4, pp. 531–551, Dec. 1995. [Online].

Available: http://dx.doi.org/10.1137/1037125

[10] M. Cornea-Hasegan, R. Golliver, and P. Markstein, “Correctness

proofs outline for newton-raphson based floating-point divide and

square root algorithms,” in Computer Arithmetic, 1999. Proceedings.

14th IEEE Symposium on, 1999, pp. 96–105.

[11] F. de Dinechin, M. Joldes, and B. Pasca, “Automatic generation of

polynomial-based hardware architectures for function evaluation,” in

International Conference on Application-specific Systems, Architec-

tures and Processors. France Rennes: IEEE, Jul 2010.

[12] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths

with FloPoCo,” IEEE Design and Test, 2011.

[13] F. de Dinechin, M. Joldes, B. Pasca, and G. Revy, “Multiplicative

square root algorithms for FPGAs,” in International Conference on

Field Programmable Logic and Applications. IEEE, aug 2010.

[14] B. Pasca, “Correctly rounded floating-point division for DSP-enabled

FPGAs,” in 22th International Conference on Field Programmable

Logic and Applications (FPL’12). Oslo, Norway: IEEE, Aug. 2012.

[15] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,

V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Hand-

book of Floating-Point Arithmetic. Birkhäuser Boston, 2010, ACM

G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[16] M. Joldes, J.-M. Muller, and V. Popescu, “On the computation

of the reciprocal of floating point expansions using an adapted

Newton-Raphson iteration,” Tech. Rep., 2014. [Online]. Available:

http://hal.archives-ouvertes.fr/hal-00957379

