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ABSTRACT

Many applications require the evaluation of polynomials hav-

ing floating-point coefficients - one example is rational poly-

nomial approximation, often used to implement some spe-

cial functions. The most resource efficient polynomial eval-

uation scheme (Horner) is costly to implement on FPGAs

due to the high cost associated with floating-point arithmetic.

Floating-point adders are particularly costly due to their align-

ment stages requiring large barrel shifters. In this work we

present a novel FPGA-specific technique for evaluating poly-

nomials using the Horner scheme. Our technique removes

the majority of alignment shifters present in floating-point

adders by building a fused evaluation operator. It pushes

the possible alignment values of the monomials into tables

containing multiple shifted coefficient instances which are

selected using the exponent of the input argument. Com-

pared to operator assembly this work reduces circuit latency

by 30-50% and logic consumption by 40-60%. Our work

can be easily extended to other polynomial evaluation meth-

ods.

1. INTRODUCTION

Many applications require the evaluation of polynomials hav-

ing floating-point coefficients. Using a careful dynamical

range analysis a fraction of these polynomial evaluators could

be converted to smaller and more efficient fixed-point solu-

tion. This conversion requires specialized expertise, longer

development times and is likely to be performed only for

performance critical systems.

A larger ratio of floating-point polynomial evaluators must

handle high dynamic data ranges. A solution built by simply

assembling floating-point floating-point operators can usu-

ally outperform an equivalent fixed-point implementation

having a very wide datapath.

Fused floating-point datapaths as presented in [1] can

improve the general performance of floating-point datap-

aths on FPGAs. Unfortunately, the presented techniques can

only marginally apply to Horner evaluation datapaths.

Operation-specific fusion, as presented in [2] shows how

designing an specific implementation for x2 + y2 + z2 can

save up to 75% of the resources of a naive floating-point

implementation. The work can be easily extended to larger

sums-of-squares, and even norms, but is not clear how to

extended it to polynomial evaluation.

We have recently presented in [3] a method for evalu-

ating floating polynomials on restricted input range of the

form [0,2−k] where k is typically in the range 8..10. This

has been used to implement the atan(x) function using its

Taylor series. In this paper we extend the previously intro-

duced technique to handle the entire input range. Our results

prove that this method can reduce circuit latency by 30-50%

and logic consumption by 40-60% for general polynomial

coefficients.

Applications often require the evaluation of multiple poly-

nomials using the same hardware. One such example is

Acklam’s algorithm [4] for approximating the inverse cu-

mulative distribution function, where two disjoint rational

polynomial approximations are required. We show in this

paper how the presented technique can be extended to han-

dle this requirement. We demonstrate in our results section

that the impact on the implementation size is minimal.

2. BACKGROUND

The IEEE-754 standard on floating-point arithmetic (revised

in 2008 [5]) uses a triplet (sign, exponent, fraction) to repre-

sent a floating-point number:

x = (−1)s2e1. f

The number of bits used to store the exponent and frac-

tion (wE and wF ) define the formats of the IEEE-754 stan-

dard. For instance, binary64 (known as double precision)

has wE = 11 and wF = 52 and binary32 (single precision)

has wE = 8 and wF = 23. Custom formats (pairs of wE ,wF

not specified in the standard) are used to bridge the precision

gap between single and double precision. These formats can

be used to exploit the flexibility of FPGAs and outperform

microprocessors [6].

Let P(x) be a degree d polynomial of one floating-point

variable with floating point coefficients ai.

P(x) =
d

∑
i=0

aix
i
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Fig. 1. Typical monomial alignment for x> 1 (top) and x< 1

(bottom)

There are several well known methods for evaluating

polynomials: Horner’s method, Estrin’s method and several

brute-force methods [7]. Horner’s method minimizes re-

sources in an unrolled implementation while being the most

numerically stable method.

Using Horner’s method, the polynomial P(x) will be eval-

uated in d steps, each consisting of a product π and a sum

σ.

P(x) = a0 + x(a1 + x(a2 + x(a3 + x(...x(ad)...)))

3. PROPOSED ALGORITHM

Consider the previously defined polynomial P having con-

stant fixed-point coefficients. For simplicity of the exposi-

tion assume that the coefficients are of the same magnitude,

and ai ∈ [1/2,1), i ∈ [0,d]. We assume for now that x ≥ 0.

We will later show that the method works without these re-

strictions.

When evaluating P(x), as x < 1 gets closer to zero, the

higher order monomials (aix
i with i closer to d) also tend

to zero, and have an increasingly lower contribution in the

final result. In fact, beyond a certain threshold for x (x gets

very close to zero) even the contribution of xa1 has a weight

lower than the precision of a0. In this case the result of the

evaluation is simply a0. For a toy floating-point format with

5 fractional bits (wF = 5) the monomial alignments for de-

creasing values of the exponent of x (eX ) are exemplified on

the bottom of Figure 1. For x > 1, the higher order mono-

mials tend to have an increasingly dominant contribution to

the final evaluation result. This is exemplified on the top of

Figure 1.

In both cases, the relative alignment of the monomi-

als in the final summation has two components. First, the

weight of the coefficients, which is equal to the weight of

the monomials when x= 1 gives the initial fixed-point align-

ment of the monomial summation datapath. For instance,

if P(x) = 1− 0.34x+ 0.2x2 the weights of the monomials

would be 0, -2 and -3. Secondly, the weight of xi (which

can either be positive when x > 1, or negative for x < 1)

is associated with the dynamical contribution of the mono-

mials in the summation. For the same polynomial, when

x = 0.5 which is expressed in floating-point as x = 2−1×1.0
the first monomial would be equal to −0.34× 2−1 × 1.0
having a weight of −2 − 1. For the degree-2 monomial

0.2× (2−1 × 1.0)2 which is equal to 0.2× 2−1×2× 1.02 has

a weight of −3− 1× 2.

Let the Horner evaluation datapath given below

P(x) = a0 + x(a1 + xa2)

which expands each term into its floating-point components.

For simplicity we assume that x and ai are positive (sign is

zero):

P(x) = 2ea01. fa0 + 2ex1. fx

(
2ea11. fa1 + 2ex1. fx2ea21. fa2

)

We use the following rewriting which regroups the terms

such that the scaling produced by xi is associated with the

corresponding coefficient.

P(x) =2ea01. fa0+

1. fx

(
2ea1+ex 1. fa1
︸ ︷︷ ︸

2ea1 1. fa1 scaled by ex

+1. fx 2ea2+2ex1. fa2
︸ ︷︷ ︸

2ea2 1. fa2 scaled by 2ex

)

For x < 1 the evaluation of the polynomial can be per-

formed in fixed-point, once the monomials of order greater

than zero are aligned against a0. The alignment of each

monomial only depends on eX and can be pushed in the
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Fig. 2. Tabulated coefficient shifts. The first line in each

table corresponds to the signed and normalized coefficient.

Subsequent lines correspond to weighted-down values of the

coefficients corresponding to the shift amounts.

alignment of the monomial coefficient. Therefore, the cor-

responding aligned coefficient may be obtained from a table

indexed by the exponent of x.

The tabulated shifts for the coefficients when x < 1 have

a particular pattern as presented in Figure 2(a). Coefficient

a1 is shifted right in increments of one binary position as the

exponent of x decreases. Coefficient a2, which corresponds

to the monomial x2a2 is shifted right in increments of two

positions as ex decreases. For instance, when ex =−1:

x2a2 = (2ex 1. fX)
2a2 = 22ex1. fX

2a2 = 1. fX
2(2−2a2)

In general, the table corresponding to coefficient ai will

contain all instances of the coefficient shifted right in in-

crements of i positions. As previously explained, for each

monomial, as eX becomes smaller, there exists a threshold

value ζi beyond which its contribution becomes smaller than

the precision of a0. This observation allows us to reduce the

number of coefficient instances which need to be stored in

the tables. Exponent values lower than ζi will saturate to

this value and will address the last table entry which stores

zero. Figure 2(a) presents the general layout of the coeffi-

cient tables for x < 1.

Let us consider again the same degree 2 polynomial P(x),
but now for the case x > 1. As previously presented and ex-

emplified on the top of Figure 1, the dominant monomials

in the final summation will be the high-degree ones. We

use the following rewriting which aligns all the lower order

monomials against ad . The final result is scaled up by the

weight of the adxd monomial which is 22ex for our example.

P(x) = 2ea01. fa0 + 1. fx

(
2ea1+ex 1. fa1 + 1. fx2ea2+2ex1. fa2

)

= 22ex ·
(

2ea0−2ex1. fa0
︸ ︷︷ ︸

1. fa0 scaled by 2ex

+1. fx

(
2ea1−ex1. fa1
︸ ︷︷ ︸

1. fa1 scaled by ex

+1. fx2ea21. fa2

))

The relative shifts of the coefficients will be with respect

to ad and depend only on ex. As previously, these relative

shifts also have a specific pattern. Coefficient ad−1 will be

shifted right in increments of one position, coefficient ad−2

in increments of two positions and more generally, coeffi-

cient ad−i in increments of i positions. Figure 2(b) shows

the general layout of the coefficient tables for x > 1 on the

example degree 2 polynomial.

The fused shift coefficient tables which allow evaluation

of an arbitrary x are presented in the top part of Figure 3.

4. IMPLEMENTATION

The high-level diagram of the implementation is depicted in

Figure 3. Each coefficient is associated with a table which

contains all the possible shift cases for this coefficient. The

shifts consist of a union between required shift cases for

x ≤ 1 and those for x > 1 avoiding to store any duplicate

shifts. For instance, in the case of a degree 2 polynomial,

the shift table associated with a1 will contain all the shifts

with increment 1 for both x ≤ 1 and x > 1. Consequently

only one set of shifts will be stored. The fact that coefficient

tables are fused is highlighted in Figure 3 where the shifts

corresponding to both cases are crossed-hatched.

Each table will have a fixed-point output format. The

weight of each table output is given by the exponent value

of the corresponding coefficient. For instance, for P(x) =
1− 0.34x+ 0.2x2 the exponent values are 0, −2 and −3.

Since coefficients may have different signs, the tables will

store the signed values of the coefficients.

The number of bits stored in each table will depend on

wF , the maximum relative shift of the the coefficient against

both a0 and ad which we denote by τi and a number g of

guard bits which depend on the polynomial degree such that:

wi = 1+wF + τi + g

The coefficient tables now contain the shifts correspond-

ing to the exponent of x. We store x on 1+ 1 +wF bits

in two’s complement, having wF fractional bits. All fixed-

point formats are signed, such that we can use a couple

< w, f > to characterize each of these formats. There are

some basic rules associated to fixed-point arithmetic. For
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Fig. 3. Proposed polynomial evaluation architecture

multiplication, the format of the result is given by the fol-

lowing formula. The replication of the sign in the product of

two signed inputs allows us to reduce its size by one bit.

a =< wa, fa >;b =< wb, fb >

a× b =< wa +wb − 1, fa + fb >

The sum of two numbers in this format is given by the

formula:

msba = wa − fa − 1;msbb = wb − fb + 1;

lsba =− fa; lsbb =− fb;

s = a+ b;

msbs = max(msba,msbb)+ 1; lsbs = min(lsba, lsbb);

ws = MSBs −LSBs + 1;w f =−LSBs;

In order to construct the floating-point output value rFP,

the signed fixed-point result rFXP
s having < wrs , frs > has to

first be converted to unsigned rFXP
u =< wrs − 1, frs > and

then normalized. The number of leading zeros are of rFXP
u is

denoted by c.

Depending on the current computing branch, there are

two cases for the exponent update which are presented in

Equation (4). As expected, the exponent value for the x > 1

branch needs to be amplified by d × eX which is the scaling

factor of the datapath.

er =

{
wru − fru − c− 1 if x ≤ 1

d× eX +wru − fru − c− 1 otherwise

After this final shift and normalization only an wF + 1

fraction is kept (not including the ”hidden” 1). The lsb of

this value is used for rounding which may update the expo-

nent.

Finally, the exponent value is checked for overflow and

underflow, and together with the input special cases (Zero,

Inf, NaN) the final output value is set.

5. EVALUATING MULTIPLE POLYNOMIALS

Evaluating multiple polynomials can easily be done by fus-

ing the shifted coefficient tables. Most of the time tables

corresponding to one coefficient have different fixed-point

formats across the set of polynomials. In this case, we need

to first determine a wider format across the set of tables cor-

responding to one coefficient which allows all correspond-

ing data to be represented without loss of information.

We simplify addressing the multiple coefficient banks

by storing the same number of shifted coefficient instances

for corresponding coefficients across all polynomials. This

allows for a simple offset addressing scheme as an extension

of the single polynomial addressing scheme.

Coefficient sets having very different magnitudes can

significantly widen the table outputs and increase the eval-

uation datapath size. One simple solution is to use fixed

prescaling factors for the polynomials in order to minimize

the size of the tables. The results will need to be scaled back

before constructing the final solution.

6. RESULTS

In this section we present two sets of experimental results.

First, in Table 1 we compare the implementation size and

latency between the proposed polynomial evaluator and one

built out of standard floating-point components. The se-

lected device for this test is a recent Altera Stratix-IV de-

vice [8], with a target frequency of 300MHz. The classical

polynomial evaluator structures are generated using the Al-

tera DSP Builder Advanced Blockset [9]. The polynomial

is evaluated in single and double precision but our flexible



architecture can handle any precision. For each format 4

polynomials are evaluated, with degrees ranging from 2 to

5. The polynomial used is P(x) = 1.7+ 1.432x+ 8.99x2+
0.07x3 + 5.33x4 + 3.99x5 for which higher degree monomi-

als are truncated for the d = 2, d = 3 and d = 4 experiments.

For these parameters we can observe that for similar out-

put frequencies the latency is reduced between 38% and

58%. As expected, the logic resources given by the ALM

count(1 ALM = 2 look-up tables and 2 registers) is also re-

duced by 62% to 42%.

The proposed solution can occasionally use more em-

bedded multipliers (DSPs blocks) due the wider internal mul-

tipliers (guard bits are required to in order to prevent over-

flows and increase accuracy). In some situations, the larger

granularity of the multipliers (36-bit for efficient usage on

StratixIV) can absorb this increase at no extra cost.

Of course, we know that the internal multipliers are wider

than for the pure floating-point solution, and that their size

increases in the datapath (πi+1 < πi). For multipliers larger

than the DSP sweet-spots (36-bit for StratixIV) we use trun-

cated multipliers [10]. For instance, for single precision

both degree 4 and 5 polynomials require multipliers with

one input slightly wider than 36. Using truncated multipli-

ers with small logic multipliers allows significantly reducing

DSP count. When these soft multipliers become too big to

implement efficiently in logic, moving to a DSP-based im-

plementation will negatively impact the DSP count.

The shifted coefficient tables needed by our solutions

can efficiently be implemented using MLAB (Memory LAB)

resources and are included in the total ALM cost. The num-

ber of embedded memory blocks (M9K in Stratix-IV) in Ta-

ble 1 are due to the wide and long delay lines needed to

propagate x in the classical approach.

We have used our multi-polynomial evaluation solution

in order to implement the inverse normal cumulative distri-

bution function (ICDF) using Acklam’s algorithm [4], de-

picted in Figure 4. Among other computations, this algo-

rithm requires a rational polynomial approximation of de-

gree 5 for the numerator and degree 4 for the denominator.

The rational polynomial approximation takes two sets of co-

efficients: the first for when the probability p is close to 0 or

1, and the second for the general case. For the proposed so-

lution we use the method described in Section 5, and merge

both coefficient sets in the same tables; a unique evaluation

datapath is built for the two coefficient sets. For the classi-

cal solution multiplexers selecting between the constants are

used.

Table 2 presents the results for this experiment in both

single and double precision. We present the performance

and resources of the full system and separately for the multi-

polynomial numerator and denominator of the rational poly-

nomial approximation.

We can clearly observe that the same savings in terms of

Table 2. Synthesis results for the full circuit computing the

normal ICDF usign Acklam’s algorithm. Results are given

for single and double precision, targeting a Statix-IV device

with freq = 300MHz. The low part of the table presents the

isolated numerator and denominator results.
Method Lat. Freq. Resources

Full system

Single Precision

Proposed 89 283MHz 6055ALM, 71 18-bit Mul, 14M9K

Classical 123 278MHz 8791ALM, 71 18-bit Mul, 15M9K

Double Precision

Proposed 187 247MHz 16881ALM, 360 18-bit Mul, 98M9K

Classical 222 241MHz 22413ALM, 360 18-bit Mul, 100M9K

Numerator + Denominator

Single Precision

Proposed 25 312MHz 1477ALM, 36 18-bit Mul

Classical 60 296MHz 4468ALM, 36 18-bit Mul

Double Precision

Proposed 45 285MHz 5248ALM, 144 18-bit Mul

Classical 80 277MHz 11488ALM, 144 18-bit Mul, 4M9K

latency and logic can be obtained for multiple polynomials

being evaluated using the same hardware.

As for multi-polynomial evaluation, for small number

of polynomials the shifted coefficient tables can be stored

in MLAB locations. Once transitioned to using memory

blocks, a large number of shifted coefficient sets can be

packed in these memories before more additional memory

is required. For instance, moving from 5 to 8 polynomials

should come at no cost once the initial 5 polynomial coeffi-

cients are using M9Ks.

Fig. 4. Acklam’s code ICDF [4]
a, b, c, d: coefficient vectors

Define break-points.

p_low <- 0.02425

p_high <- 1 - p_low

Rational approximation for lower region.

if 0 < p < p_low

q<- sqrt(-2*log(p))

x<- (((((c(1)*q+c(2))*q+c(3))*q+c(4))*q+c(5))*q+c(6))/

((((d(1)*q+d(2))*q+d(3))*q+d(4))*q+1)

endif

Rational approximation for central region.

if p_low <= p <= p_high

q<- p - 0.5

r<- q*q

x<- (((((a(1)*r+a(2))*r+a(3))*r+a(4))*r+a(5))*r+a(6))*q/

(((((b(1)*r+b(2))*r+b(3))*r+b(4))*r+b(5))*r+1)

endif

Rational approximation for upper region.

if p_high < p < 1

q<- sqrt(-2*log(1-p))

x<- -(((((c(1)*q+c(2))*q+c(3))*q+c(4))*q+c(5))*q+c(6))/

((((d(1)*q+d(2))*q+d(3))*q+d(4))*q+1)

endif



Table 1. Synthesis results for various degree polynomials on a Stratix-IV with target FMax=300MHz, for single and double-

precision

Method Precision Degree Latency Frequency Resources

Proposed

Single

2
13 362MHz 372 ALMs, 8 18-bit Mul

Classical 24 290MHz 1036ALMs, 8 18-bit Mul

Proposed
3

17 324MHz 537 ALMs, 12 18-bit Mul

Classical 36 281MHz 1417ALMs, 12 18-bit Mul

Proposed
4

21 318MHz 563 ALMs, 16 18-bit Mul

Classical 48 259MHz 1951ALMs, 16 18-bit Mul

Proposed
5

25 292MHz 717 ALMs, 20 18-bit Mul

Classical 60 271MHz 2437ALMs, 20 18-bit Mul, 1 M9K

Proposed

Double

2
21 300MHz 1266ALMs, 32 18-bit Mul

Classical 32 266MHz 2265ALMs, 32 18-bit Mul

Proposed
3

29 296MHz 1613ALMs, 48 18-bit Mul

Classical 48 257MHz 3346ALMs, 48 18-bit Mul, 2 M9K

Proposed
4

37 289MHz 2279ALMs, 64 18-bit Mul

Classical 64 276MHz 4577ALMs, 64 18-bit Mul, 4M9K

Proposed
5

45 262MHz 2965ALMs, 80 18-bit Mul

Classical 80 274MHz 5720ALMs, 80 18-bit Mul, 6 M9K

7. CONCLUSION

Polynomial evaluation is costly mostly due to the number

and the size of floating-point adders. Each floating-point

adder contains alignment and normalization stages which

are responsible for roughly 75% or the entire logic usage.

In this work we have presented an efficient FPGA-specific

alternative for evaluating floating-point polynomials. Our

work accounts for the polynomial structure of the opera-

tion and transfers the input-dependent predictable monomial

alignment shifts into tables. We are left with a dynamic

fixed-point computation for which FPGAs are designed to

perform well. A final and unique normalization stage is re-

quired in the general case in order to output the floating-

point result. Compared operator assembly this work reduces

circuit latency by 30-50% and logic consumption by 40-60%

in the general case.
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