
1

Faithful Single-Precision Floating-Point Tangent for

FPGAs
Martin Langhammer, Bogdan Pasca

Altera European Technology Centre

High Wycombe, UK

Abstract—This paper presents an FPGA-specific implementa-
tion of the floating-point tangent function. The implementation
inputs values in the interval [−π/2, π/2], targets the IEEE-
754 single-precision format and has an accuracy of 1 ulp. The
proposed work is based on a combination of mathematical
identities and properties of the tangent function in floating point.
The architecture was designed having the Stratix-IV DSP and
memory blocks in mind but should map well on any contempo-
rary FPGA featuring embedded multiplier and memory blocks.
It outperforms generic polynomial approximation targeting the
same resource spectrum and provides better resources trade-offs
than classical CORDIC-based implementations. The presented
work is widely available as being part of the Altera DSP Builder
Advanced Blockset.

I. INTRODUCTION

Many hardware implementations of trigonometric functions

use the CORDIC family of algorithms [16], [11]. Iterative

implementations consume low resources and are preferred

when implemented in the floating-point unit of embedded

processors. Unrolled implementations are often encountered in

computational datapaths targeting high throughputs. These are

recognized to be very stressful to support in FPGAs due to the

multiple, deep arithmetic structures, with each level containing

a wide adder. Chip-filling designs using such structures are

usually unable to close timing at high fmax [3].

Architectures based on polynomial approximations can be

used to implement the sine, cosine and division based on the

inverse [14]. These approaches map better to the recent FPGAs

containing thousands of multiplier and embedded memory

blocks but can be quite wasteful when implementing the

tangent operation by operator assembly [7], [12]

In this work the floating-point tangent function is im-

plemented as a fused operator. We present a step-by-step

error analysis which allows optimizing the internal operations

by computing just-right for obtaining a faithfully rounded

implementation. The results presented in Section V show the

superiority of this approach compared to the best polynomial

approximation implementations.

II. BACKGROUND

The IEEE-754 standard for floating-point arithmetic (revised

in 2008) [1] represents binary floating-point numbers using a

three element tuple: sign (1 bit), exponent (wEbits) and fraction

(wFbits) - (s, e, f) such that: x = (−1)s2e1.f . The widths of

the fields defines the supported formats: (1, 8, 23) for single

precision and (1, 11, 52) for double precision.

CR

FR
ulp

CRCR

even

FR

CR - correct rounding
FR - faithful rounding

floating-point numbers

Fig. 1. IEEE-754 correct rounding for round to nearest and the non-standard
and faithful rounding

Let x, y and q be floating-point numbers such that q =
◦(x op y) where (◦) denotes rounding an infinitely accurate

result to the target format. Rounding to nearest is desired as it

provides the best accuracy (maximum error of 1/2 ulp where

the ulp denotes the unit in the last place). For elementary

functions round to nearest is very difficult to obtain - problem

called the Table Maker’s Dilemma [13]. For these functions

implementations diverge from the standard and implement the

relaxed faithful rounding (Figure 1) with a maximum error of

1ulp.

In this work we present a multiplier and memory based

architecture of the floating-point tangent function having an

accuracy of 1 ulp.

Recent Altera FPGAs such as Stratix-III/-IV [2], [4] contain

thousands of such embedded resources. One Stratix-IV half-

DSP block (each half can be configured independently) can be

configured to implement either 2 18 × 18 multipliers or one

36 × 36 multiplier. Embedded memory blocks can also have

various configurations, most relevant for this work being the

256× 36 and 512× 18 modes of the M9K block.

III. ALGORITHM

We present here the algorithm used to compute a faithfully

accurate floating-point tangent in single precision, where the

input interval is restricted to [−π/2,+π/2]. This type of

operator can be directly used in datapaths where we can bound

beforehand the range of the the input variable. In order to

obtain an operator for the full floating-point input range a

supplementary range-reduction step is required [9], [15] which

is currently outside the scope of this work.

Tangent is symmetrical to the origin: tan(−x) = − tan(x);
this allows restricting the computation to positive arguments

[0, π/2).

2

The Taylor expansion for the tangent is

tan(x) = x+
1

3
x3 +

2

15
x5 + ... x ∈

(
−π

2
,
π

2

)
(1)

If x is very small (< 2−wF/2) a good approximation for

tan(x) is x. This is due to the fact that the higher order terms

in Equation 1 have weights lower than the LSB of x and are

shifted-out in the final summation. This is a well known prop-

erty of the floating-point sine and tangent functions. The dy-

namic range of the input is therefore limited to [2−wF/2,+π/2],
allowing the input to the function to be represented in an error-

free fixed-point format with 1+wF + ⌈wF/2⌉ bits (24+12=36

bits for single precision).

The following mathematical identity holds true for tangent:

tan(a+ b) =
tan(a) + tan(b)

1− tan(a) tan(b)
(2)

this can be expanded to:

tan(a+ b+ c) =

tan(a) + tan(b)

1− tan(a) tan(b)
+ tan(c)

1−
tan(a) + tan(b)

1− tan(a) tan(b)
tan(c)

(3)

Building a faithfully accurate floating-point tangent requires

the final error to be less than 1ulp. The final error has two

components: Etotal = Eapprox + Eround. The rounding error

(Eround) is a bound on the maximal error done when packing

a possibly infinitely accurate result into the target format.

Rounding to nearest will yield a maximal error of 1/2ulp. The

approximation error (Eapprox) sums the both the method errors

and the errors due to implementation optimizations (datapath

trimmings). The objective is to keep the sum of these errors

smaller than 1/2ulp.

The proposed architecture is based on Equation 3, which is

implemented as a floating-point multiplication between the nu-

merator (n) and the inverse of the denominator (id): p = n×id.

In the following equation, tilde variables are approximations.

The approximation error is computed as Eapprox = |(p̃−p)/p|.

p = n× id;

p̃ = ñ× ĩd

= n(1 + ǫ)× id(1 + ǫ)

= n · id+ 2 · n · id · ǫ + n · id · ǫ2.

Eapprox = |(p− p̃)/p|

= |(2 · n · id · ǫ+ n · id · ǫ2)/(n · id)|

= |2ǫ+ ǫ2| ≤ 1/2 · 2−p (4)

From inequality 4, where p = 24 for single-precision results

that the value of ǫ should be slightly smaller than 2−26 which

translates into slightly better than 1/4ulp error bound for both

the numerator and denominator.

The complexity of computing the numerator in Equation 3

to the required accuracy can be reduced, for single-precision,

by using the fixed-point decomposition presented in Figure 2.

This decomposition favours tabulating the tangent computa-

tions for tan(a) and tan(c) using embedded memory blocks.

��������
��������
��������
��������

���������
���������
���������

���������
���������
���������

����������������
����������������
����������������

����������������
����������������
����������������

a - 9bitc - 9bit b - 18bit

Fig. 2. The fixed-point decomposition of the input argument x

In addition, as both tan(a) and tan(b) are small, tan(a) tan(b)
is also very small. Moreover, as b < 2−17 it is safe to use

tan(b) ≈ b. Therefore, we will use the follwing approximation

for computing the numerator:

n = tan(c) + tan(a) + b (5)

We need to compute a bound on the error of this approx-

imation. We do this for two cases. First, tan(c) = 0 and

tan(a) tan(b) maximal:

a = . 111111111

b = . 111111111111111000

In this case the relative error is slightly less than 2−25, and

should be 2−26. However, in this case the denominator value

is 1 and carries no error, so the accuracy is reached. Second,

for tan(c) minimal but greater than zero and tan(a) tan(b)
maximal, the value for tan(a) has a lower weight than tan(c),
which pushes the relative error in the summation to 2−26.

Consequently, computing both tan(a) and tan(b) with 1 +
wF + 2 bits of accuracy suffices.

The denominator will be computed using a similar approx-

imation as for the numerator.

d = 1− (tan(a) + b) tan(c) (6)

This computation involves a possible cancellation which

can amplify an existing error by an amount equal to the

cancellation size. This would require computing the subtracted

term with additional accuracy. As the cancellation occurs when

the input is close to π/2 we use an additional table for the

final 256ulp before π/2. Hence, the largest cancellation can

now be produced by the following input:

c = 1.10010010;

a = . 000111001;

b = . 010000;

The cancellation size is 3 bits, and therefore we require 3

additional bits of accuracy in computing the right term of the

subtraction. This requires computing both tan(a) and tan(c)
with 1 + wF + 2+ 3 bits of precision and 0.5ulp of accuracy.

IV. IMPLEMENTATION

The implemented architecture is presented in Figure 3. As

a and c are small subsections (9 bits) of the fixed point input,

the tangents for all possible bit combinations can be stored in

36-bit wide data tables:

• tan(c) has a dynamic range between 2−8 and 211. It will

be stored in a normalized floating-point format with an

exponent on 5 bits and a fraction on wF + 5 bits. The

hidden ’1’ is also stored explicitly in order to save on

the decoding logic for 0. The total data width in this

table is therefore 34 bits (M9K have a width of 36-bits).

3

LZC

normalize

LZC

normalize

exponent
numerator

product
denominator

LUT

tan(1.57− 0.002)

LZC

R

Rounding

Exception Handling

1

normalize

1

1/x

X

LUT tan(x)

π/2− 256ulp to π/2

bias

expX’1’&fracX

fixed-point X

115

LUT

tan(0.002− 7 · 10−6)

[26:18]ac

b

tan(a) + b

fr
ac

ti
o

n

ex
p

o
n

en
t

FP tan(c)

15

numerator
fraction

π/2
256ulp

2

[35:27]

[17:0]

Fig. 3. The architecture for the faithful single-precision floating-point tangent

• tan(a) has a dynamic range of just 9 positions. We store

this value directly in fixed-point for a total width of 9 +
23+5 = 36+1 which one bit wider than the M9K block

in Stratix-IV/-III devices.

The problem has now been reduced to a 36 bit fixed-point

multiply and a 36 bit fixed-point divide. There are also some

additions required: although they will be a form of floating

point, explained below. The subtraction will be a simple fixed-

point subtraction.

The input number is first converted to a 36 bit fixed-point

number by shifting the difference between the number and the

maximum biased input exponent. The fixed point input is then

split into three numbers: c - bits (35 downto 27), a - bits(26

downto 18), and b, the least significant 18 bits.

The numerator is calculated largely on the left side of Figure

3. The tan(a) and b numbers are in fixed-point format, and

can immediately be added together. The tan(a) + b sum may

grow by one bit when both a and b approach their maximums.

The sum must then be aligned to the exponent of c, which

can range from 0 to 19 (127 to 146 in single precision offset

equivalent).

After right shifting the sum tan(a) + b it can finally be

added to the mantissa of c. Next, tan(c) + tan(a) + b sum is

then normalized. The numerator now exists in a floating point

format.

The denominator is calculated largely on the right side of

the diagram. The tan(a) + b sum is normalized before the

multiplication by the mantissa of tan(c). The local exponent

is used to denormalize the product to a fixed-point number

again. The now fixed-point value of (tan(a) + b) · tan(c) is

subtracted from 1, and is normalized again before the division.

The maximum cancellation size is 3 positions which simplifies

the normalizer implementation.

As presented in the error analysis section, the final division

is implemented as an inverse of the denominator, which is

then multiplied by the numerator. The division uses a nor-

malized denominator, and the multiplier input is a normalized

numerator. The product therefore requires only a single bit

normalization, which is implemented as a 2-1 multiplexer.

Finally, a rounding stage, along with the application of special

or signalling conditions, is performed.

If the biased input exponent is less than 115, the output

and the input are considered the same, as this is the point

where tan(x) = x. This is implemented as an input in the

final multiplexer in Figure 3. If the input is within the 256ulp

prior to π/2 a tabulated value is used, which is also an input

in the final multiplexer.

V. RESULTS

Table I presents the synthesis results for our proposed

implementation on a Stratix-IV C2 speedgrade FPGA. The

Resources numbers are given as returned by QuartusII: number

of DSP blocks is given in terms of 18-bit multipliers (4 18-

bit multipliers compose a 36 x 36 block). The 18 18-bit

multipliers also comprise the units needed for implementing

the inverse calculation.

We first compared our proposed solution against the

tan(πx) implementation available in Altera DSP Builder

Advanced [5] block set. This implementation also performs

a simple range reduction, so it is expected to be 100-200LUT

smaller when the input range is limited to −π/2 to π/2.

Nevertheless, the proposed fine-tuned implementation has

a significantly shorter latency, consumes fewer multipliers,

roughly the same number of memory blocks and less than

half the logic.

We have also compared this implementation against the

sin cos operator presented in [10]. This is a combinatorial de-

sign, targeting a VirtexII-Pro and uses a fused sin cos operator.

Similar to [5], it inputs an argument of πx which slightly

penalizes the implementation compared to ours. In the bottom

part of Table I we give two top divider implementations,

each targeting different resources spectrum: the FloPoCo [7]

divider uses a digit recurrence method whereas the DSPBuilder

Advanced version [14] uses polynomial approximation. The

full tangent implementation based on [10] would require an

extra division. Additionally, pipelining the implementation is

4

TABLE I
SYNTHESIS RESULTS FOR STRATIX-IV C2. MUL = 18-BIT MULTIPLIERS

Architecture Lat @ Freq. Resources

ours 30 @ 314MHz 18MUL, 8M9K, 1172LUT, 1078Reg
tan(πx) [5] 48 @ 360MHz 28MUL, 7M9K, 2633LUT, 4099Reg
sin cos(πx) [10] 85ns 10 MUL, 2*1365 LUTs

div [7] 16 @ 233MHz 1210LUT, 1308REG
div [14] 11 @ 400MHz 8MUL, 4M9K, 274LUT, 291Reg

also expected to increase resource usage. All this considered,

the proposed architecture manages to outperform this imple-

mentation.

VI. CONCLUSION

We have presented the architecture of a faithfully accurate

single-precision tangent. Unlike previous works, the tangent

is viewed as a fused operator which, in combination with

a careful error analysis, allows significantly reducing imple-

mentation cost. The implementation targets recent Stratix-III/-

IV devices and resizes the internal datapath in order to: 1/

use the larger multiplier granularity – one 36-bit multiplier is

equivalent in cost to two 18-bit ones 2/ make good use of the

available block memory size.

Future work includes generalizing these techniques for

larger precision. In such a case tan(c) and tan(a) will be too

large for direct tabulation. Using the HOTBM approach by

Detrey and de Dinechin [8] would allow computing these to

higher precisions with little cost. The larger multipliers needed

in these operators would benefit from the truncated multiplier

techniques presented by Banescu et. al. [6].

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages
1–58, 29 2008.

[2] StratixIII Device Handbook, 2010. http://www.altera.com/literature/hb/
stx3/stratix3 handbook.pdf.

[3] An Independent Analysis of Altera’s FPGA Floating-point DSP Design
Flow, 2011.

[4] StratixIV Device Handbook, 2011. http://www.altera.com/literature/hb/
stratix-iv/stx4 5v1.pdf.

[5] DSP Builder Advanced Blockset, 2017. https://www.altera.com/
products/design-software/model---simulation/dsp-builder/overview.
html.

[6] S. Banescu, F. de Dinechin, B. Pasca, and R. Tudoran. Multipliers for
floating-point double precision and beyond on FPGAs. In International

Workshop on Higly-Efficient Accelerators and Reconfigurable Technolo-

gies (HEART). ACM, jun 2010.
[7] F. de Dinechin and B. Pasca. Designing custom arithmetic data paths

with FloPoCo. IEEE Design and Test, 2011.
[8] J. Detrey and F. de Dinechin. Table-based polynomials for fast hardware

function evaluation. In Application-Specific Systems, Architectures, and

Processors (ASAP’05), pages 328–333, Samos, Greece, July 2005. IEEE
Computer Society.

[9] J. Detrey and F. de Dinechin. Floating-point trigonometric functions for
FPGAs. In International Conference on Field Programmable Logic and

Applications, pages 29–34, Amsterdam, Netherlands, aug 2007. IEEE.
[10] J. Detrey and F. de Dinechin. Floating-point trigonometric functions for

FPGAs. In K. Bertels, W. Najjar, A. van Genderen, and S. Vassiliadis,
editors, 17th International Conference on Field Programmable Logic

and Applications (FPL’07), pages 29–34, Amsterdam, Netherlands, Aug.
2007. IEEE.

[11] E. Garcia, R. Cumplido, and M. Arias. Pipelined CORDIC design on
FPGA for a digital sine and cosine waves generator. In Electrical and

Electronics Engineering, 2006 3rd International Conference on, pages
1 –4, sept. 2006.

[12] M. Langhammer and T. VanCourt. FPGA floating point datapath
compiler. Field-Programmable Custom Computing Machines, Annual

IEEE Symposium on, 17:259–262, 2009.
[13] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of

Floating-Point Arithmetic. Birkhauser Boston, 2010.
[14] B. Pasca. Correctly rounded floating-point division for DSP-enabled

FPGAs. In 22th International Conference on Field Programmable Logic

and Applications (FPL’12), Oslo, Norway, Aug. 2012. IEEE.
[15] M. H. Payne and R. N. Hanek. Radian reduction for trigonometric

functions. ACM SIGNUM Newsletter, 18(1):19–24, Jan. 1983.
[16] Y. Shang. Implementation of ip core of fast sine and cosine operation

through FPGA. Energy Procedia, 16, Part B(0):1253 – 1258, 2012.
2012 ICFEEM.

